Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Bioenerg ; 1865(2): 149027, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109971

RESUMO

Mitochondrial membrane potential (Δψ) and morphology are considered key readouts of mitochondrial functional state. This morphofunction can be studied using fluorescent dyes ("probes") like tetramethylrhodamine methyl ester (TMRM) and Mitotrackers (MTs). Although these dyes are broadly used, information comparing their performance in mitochondrial morphology quantification and Δψ-sensitivity in the same cell model is still scarce. Here we applied epifluorescence microscopy of primary human skin fibroblasts to evaluate TMRM, Mitotracker Red CMXros (CMXros), Mitotracker Red CMH2Xros (CMH2Xros), Mitotracker Green FM (MG) and Mitotracker Deep Red FM (MDR). All probes were suited for automated quantification of mitochondrial morphology parameters when Δψ was normal, although they did not deliver quantitatively identical results. The mitochondrial localization of TMRM and MTs was differentially sensitive to carbonyl cyanide-4-phenylhydrazone (FCCP)-induced Δψ depolarization, decreasing in the order: TMRM ≫ CHM2Xros = CMXros = MDR > MG. To study the effect of reversible Δψ changes, the impact of photo-induced Δψ "flickering" was studied in cells co-stained with TMRM and MG. During a flickering event, individual mitochondria displayed subsequent TMRM release and uptake, whereas this phenomenon was not observed for MG. Spatiotemporal and computational analysis of the flickering event provided evidence that TMRM redistributes between adjacent mitochondria by a mechanism dependent on Δψ and TMRM concentration. In summary, this study demonstrates that: (1) TMRM and MTs are suited for automated mitochondrial morphology quantification, (2) numerical data obtained with different probes is not identical, and (3) all probes are sensitive to FCCP-induced Δψ depolarization, with TMRM and MG displaying the highest and lowest sensitivity, respectively. We conclude that TMRM is better suited for integrated analysis of Δψ and mitochondrial morphology than the tested MTs under conditions that Δψ is not substantially depolarized.


Assuntos
Aldeídos , Mitocôndrias , Humanos , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Aldeídos/metabolismo , Aldeídos/farmacologia , Fibroblastos/metabolismo , Compostos Orgânicos
2.
Mol Vis ; 28: 536-543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37089696

RESUMO

Purpose: A protein quantitative trait locus (pQTL) analysis recently revealed a strong association between hemopexin (HPX) levels and genetic variants at the complement factor H (CFH) locus. In this study, we aimed to determine HPX plasma levels in patients with age-related macular degeneration (AMD) and to compare them with those in controls. We also investigated whether genetic variants at the CFH locus are associated with HPX plasma levels. Methods: HPX levels were quantified in 200 advanced AMD cases and 200 controls using an enzyme-linked immunosorbent assay and compared between the two groups. Furthermore, HPX levels were analyzed per genotype group of three HPX-associated variants (rs61818956, rs10494745, and rs10801582) and four AMD-associated variants (rs794362 [proxy for rs187328863], rs570618, rs10922109, and rs61818924 [proxy for rs61818925]) at the CFH locus. Results: HPX levels were similar in the control group compared with the AMD group. The three variants at the CFH locus, which were previously associated with the HPX levels, showed no association with the HPX levels in our data set. No significant differences in HPX levels were detected between the different genotype groups of AMD-associated variants at the CFH locus. Conclusions: In this study, HPX levels were not associated with AMD or AMD-associated variants at the CFH locus. The finding of a previous pQTL study that variants at the CFH locus were associated with HPX levels was also not confirmed in this study.


Assuntos
Hemopexina , Degeneração Macular , Humanos , Hemopexina/genética , Degeneração Macular/genética , Degeneração Macular/metabolismo , Genótipo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Fatores de Transcrição/genética , Polimorfismo de Nucleotídeo Único/genética
3.
Exp Eye Res ; 213: 108798, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695439

RESUMO

Age-related macular degeneration (AMD) has been associated with protective genetic variants in the ß1-3 glucosyltransferase (B3GLCT) locus through genome-wide association studies. B3GLCT mediates modification of proteins with thrombospondin type I repeats (TSR) that contain O-linked glucose ß1-3 fucose and C-linked mannose glycosylation motifs. B3GLCT-mediated modification is required for proper secretion of TSR-containing proteins. We aimed to start understanding the role of B3GLCT in AMD by evaluating its effect on glycosylation and secretion of proteins from retinal pigment epithelium (RPE) cells. We generated B3GLCT knockout (KO) RPE cells and analyzed glycosylation and secretion of thrombospondin 1 (TSP1), a protein involved in cellular processes highly relevant to AMD. Glycopeptide analysis confirmed the presence of the glucose-ß1,3-fucose product of B3GLCT on TSP1 in wildtype (WT) cells and its absence in KO cells. C-mannosylation was variably present on WT TSP1 and increased on TSR domains 1 and 3 in KO cells. Secretion of TSP1 was not affected by the absence of B3GLCT, even not when TSP1 was upregulated by TNFα treatment or when TSP1 was overexpressed in HEK293T cells. Future research is needed to elucidate the effect of the observed glycosylation defects in the context of AMD, which might involve functional loss of TSP1 or effects on other TSR proteins.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Galactosiltransferases/genética , Glucosiltransferases/genética , Degeneração Macular/genética , Epitélio Pigmentado da Retina/metabolismo , Western Blotting , Sistemas CRISPR-Cas , Linhagem Celular , Expressão Gênica/fisiologia , Técnicas de Inativação de Genes , Glicosilação , Humanos , Degeneração Macular/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem
4.
Mol Vis ; 27: 142-150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33907369

RESUMO

Purpose: To evaluate the plasma levels of matrix metalloproteinase 9 (MMP9) and tissue inhibitors of metalloproteinase 3 (TIMP3) in neovascular age-related macular degeneration (nAMD) patients compared to controls, and to explore the potential effect of AMD-associated genetic variants on MMP9 and TIMP3 protein levels. Methods: nAMD and control patients were selected from the European Genetic Database (EUGENDA) based on different genotypes of rs142450006 near MMP9 and rs5754227 near TIMP3. Plasma total MMP9, active MMP9 and TIMP3 levels were measured using the enzyme linked immunosorbent assay (ELISA) and compared between nAMD patients and controls, as well as between different genotype groups. Results: nAMD patients had significantly higher total MMP9 levels compared to controls (median 46.58 versus 26.90 ng/ml; p = 0.0004). In addition, the median MMP9 level in the homozygous genotype group for the AMD-risk allele (44.23 ng/ml) was significantly higher than the median for the heterozygous genotype group (26.90 ng/ml; p = 0.0082) and the median for the homozygous group for the non-risk allele (28.55 ng/ml; p = 0.0355). No differences were detected for the active MMP9. TIMP3 levels did not significantly differ between the AMD and control groups, nor between the different genotype groups for rs5754227. Conclusions: The results of our MMP9 analyses indicate that nAMD patients have on average higher systemic MMP9 levels than control individuals, and that this is partly driven by the rs142450006 variant near MMP9. This finding might be an interesting starting point for further exploration of MMP9 as a therapeutic target in nAMD, particularly among individuals carrying the risk-conferring allele rs142450006.


Assuntos
Neovascularização de Coroide/enzimologia , Precursores Enzimáticos/sangue , Precursores Enzimáticos/genética , Metaloproteinase 9 da Matriz/sangue , Metaloproteinase 9 da Matriz/genética , Degeneração Macular Exsudativa/enzimologia , Idoso , Idoso de 80 Anos ou mais , Alelos , Neovascularização de Coroide/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Frequência do Gene , Técnicas de Genotipagem , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Inibidor Tecidual de Metaloproteinase-3/sangue , Inibidor Tecidual de Metaloproteinase-3/genética , Degeneração Macular Exsudativa/genética
5.
Sci Rep ; 10(1): 1584, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005911

RESUMO

Genome-wide association studies (GWAS) for late stage age-related macular degeneration (AMD) have identified 52 independent genetic variants with genome-wide significance at 34 genomic loci. Typically, such an approach rarely results in the identification of functional variants implicating a defined gene in the disease process. We now performed a transcriptome-wide association study (TWAS) allowing the prediction of effects of AMD-associated genetic variants on gene expression. The TWAS was based on the genotypes of 16,144 late-stage AMD cases and 17,832 healthy controls, and gene expression was imputed for 27 different human tissues which were obtained from 134 to 421 individuals. A linear regression model including each individuals imputed gene expression data and the respective AMD status identified 106 genes significantly associated to AMD variants in at least one tissue (Q-value < 0.001). Gene enrichment analysis highlighted rather systemic than tissue- or cell-specific processes. Remarkably, 31 of the 106 genes overlapped with significant GWAS signals of other complex traits and diseases, such as neurological or autoimmune conditions. Taken together, our study highlights the fact that expression of genes associated with AMD is not restricted to retinal tissue as could be expected for an eye disease of the posterior pole, but instead is rather ubiquitous suggesting processes underlying AMD pathology to be of systemic nature.


Assuntos
Predisposição Genética para Doença/genética , Degeneração Macular/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Genes/genética , Estudo de Associação Genômica Ampla , Humanos
6.
Aging Cell ; 18(3): e12924, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30793475

RESUMO

Mitochondrial dysfunction is implicated in most neurodegenerative diseases, including Alzheimer's disease (AD). We here combined experimental and computational approaches to investigate mitochondrial health and bioenergetic function in neurons from a double transgenic animal model of AD (PS2APP/B6.152H). Experiments in primary cortical neurons demonstrated that AD neurons had reduced mitochondrial respiratory capacity. Interestingly, the computational model predicted that this mitochondrial bioenergetic phenotype could not be explained by any defect in the mitochondrial respiratory chain (RC), but could be closely resembled by a simulated impairment in the mitochondrial NADH flux. Further computational analysis predicted that such an impairment would reduce levels of mitochondrial NADH, both in the resting state and following pharmacological manipulation of the RC. To validate these predictions, we utilized fluorescence lifetime imaging microscopy (FLIM) and autofluorescence imaging and confirmed that transgenic AD neurons had reduced mitochondrial NAD(P)H levels at rest, and impaired power of mitochondrial NAD(P)H production. Of note, FLIM measurements also highlighted reduced cytosolic NAD(P)H in these cells, and extracellular acidification experiments showed an impaired glycolytic flux. The impaired glycolytic flux was identified to be responsible for the observed mitochondrial hypometabolism, since bypassing glycolysis with pyruvate restored mitochondrial health. This study highlights the benefits of a systems biology approach when investigating complex, nonintuitive molecular processes such as mitochondrial bioenergetics, and indicates that primary cortical neurons from a transgenic AD model have reduced glycolytic flux, leading to reduced cytosolic and mitochondrial NAD(P)H and reduced mitochondrial respiratory capacity.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Glicólise , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Biologia de Sistemas , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Microscopia de Fluorescência
7.
Invest Ophthalmol Vis Sci ; 58(6): BIO88-BIO98, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28525563

RESUMO

"Omics" refers to high-throughput analyses of genes, proteins, or metabolites in a biological system, and is increasingly used for ophthalmic research. These system-based approaches can unravel disease-related processes and are valuable for biomarker discovery. Furthermore, potential therapeutic targets can be identified based on omics results, and targeted follow-up experiments can be designed to gain molecular understanding of the disease and to test new therapies. Here, we review the application of omics techniques in eye diseases, focusing on age-related macular degeneration (AMD), diabetic retinopathy (DR), retinal detachment (RD), myopia, glaucoma, Fuchs' corneal dystrophy (FCD), cataract, keratoconus, and dry eyes. We observe that genomic analyses were mainly successful in AMD research (almost half of the genomic heritability has been explained), whereas large parts of disease variability or risk remain unsolved in most of the other diseases. Other omics studies like transcriptomics, proteomics, and metabolomics provided additional candidate proteins and pathways for several eye diseases, although sample sizes in these studies were often very small and replication is lacking. In order to translate omics results into clinical biomarkers, larger sample sizes and validation across different cohorts would be essential. In conclusion, omics-based studies are increasing in ophthalmology, and further application to the clinic might develop in the years to come. Integration of genomics with other type of omics data has the potential to improve the accuracy of predictive tests. Moreover, in the future, omics may lead to stratification of patients into subgroups based on molecular profiles, enabling the development of personalized treatments.


Assuntos
Biomarcadores/metabolismo , Proteínas do Olho/metabolismo , Metabolômica/métodos , Oftalmologia , Proteômica/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...