Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 3: 1221, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23386976

RESUMO

We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO3 nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges.

2.
J Phys Chem A ; 114(1): 201-8, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19957990

RESUMO

Cavity ring-down spectroscopy (CRDS) is used to measure the number density of N2(A3Sigmau+) metastables produced by nanosecond repetitively pulsed discharges in nitrogen and air preheated at 1000 K and atmospheric pressure. The densities of N2(A) are inferred from the absorbance of the Q1(22) and Q3(16) lines of the (2 <-- 0) vibrational band of the first positive system (B3Pig - A3Sigmau+) of N2 at 769.945 nm. The procedure for determining the temporal evolution of the density of metastable from the measured ring down signals is presented. The maximum number densities are in the range of 10(14)-10(15) molecules cm-3 for air and nitrogen discharges, respectively. In nitrogen, the decay of the N2(A) density is shown to be a second-order process with a rate coefficient of 1.1 x 10(-9) cm3 s-1 at 1600 K with a factor of 2 uncertainty. In air, the decay is estimated to be 1 order of magnitude faster than that in nitrogen owing to quenching by atomic and molecular oxygen. Furthermore, the rotational temperature is determined by comparison of CRDS measurements and simulations of several rotational lines of the (2 <-- 0) band of the first positive system of N2 between 769.8 and 770.7 nm. The rotational and vibrational temperatures are also determined by comparison of optical emission measurements and simulations of the second positive system of N2 between 365 and 385 nm. In these CRDS measurements, we achieved a temporal resolution down to 50 ns.

3.
Astrobiology ; 4(1): 81-94, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15104905

RESUMO

The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.


Assuntos
Ar , Meteoroides , Temperatura
4.
Astrobiology ; 4(1): 67-79, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15104904

RESUMO

Meteoroids that dominate the Earth's extraterrestrial mass influx (50-300 microm size range) may have contributed a unique blend of exogenous organic molecules at the time of the origin of life. Such meteoroids are so large that most of their mass is ablated in the Earth's atmosphere. In the process, organic molecules are decomposed and chemically altered to molecules differently from those delivered to the Earth's surface by smaller (<50 microm) micrometeorites and larger (>10 cm) meteorites. The question addressed here is whether the organic matter in these meteoroids is fully decomposed into atoms or diatomic compounds during ablation. If not, then the ablation products made available for prebiotic organic chemistry, and perhaps early biology, might have retained some memory of their astrophysical nature. To test this hypothesis we searched for CN emission in meteor spectra in an airborne experiment during the 2001 Leonid meteor storm. We found that the meteor's light-emitting air plasma, which included products of meteor ablation, contained less than 1 CN molecule for every 30 meteoric iron atoms. This contrasts sharply with the nitrogen/iron ratio of 1:1.2 in the solid matter of comet 1P/Halley. Unless the nitrogen content or the abundance of complex organic matter in the Leonid parent body, comet 55P/Tempel-Tuttle, differs from that in comet 1P/Halley, it appears that very little of that organic nitrogen decomposes into CN molecules during meteor ablation in the rarefied flow conditions that characterize the atmospheric entry of meteoroids approximately 50 microm-10 cm in size. We propose that the organics of such meteoroids survive instead as larger compounds.


Assuntos
Meteoroides , Compostos Orgânicos
5.
Astrobiology ; 4(1): 109-21, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15104907

RESUMO

We report the discovery of the N(2)(+) A-X Meinel band in the 780-840 nm meteor emission from two Leonid meteoroids that were ejected less than 1000 years ago by comet 55P/Tempel-Tuttle. Our analysis indicates that the N(2)(+) molecule is at least an order of magnitude less abundant than expected, possibly as a result of charge transfer reactions with meteoric metal atoms. This new band was found while searching for rovibrational transitions in the X(2)Pi electronic ground state of OH (the OH Meinel band), a potential tracer of water bound to minerals in cometary matter. The electronic A-X transition of OH has been identified in other Leonid meteors. We did not detect this OH Meinel band, which implies that the excited A state is not populated by thermal excitation but by a mechanism that directly produces OH in low vibrational levels of the excited A(2)Sigma state. Ultraviolet dissociation of atmospheric or meteoric water vapor is such a mechanism, as is the possible combustion of meteoric organics.


Assuntos
Meteoroides , Águas Minerais , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...