Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513363

RESUMO

Theobroma cacao agro-industrial waste (WTC) has been characterized and tested as an effective biosorbent to remove Cd(II) from aqueous media. At the optimum pH of 5.0, a maximum adsorption capacity of qe,max = 58.5 mg g-1 was determined. The structural and morphological characterization have been conducted by FTIR, SEM/EDX, and TGA measurements. The SEM/EDX results confirmed that the metals are adsorbed on the surface. C-O-C, OH, CH, NH, and C=O functional groups were identified by FTIR. TGA results were consistent with the presence of hemicellulose. Biosorption kinetics were rapid during the first 30 min and then reached equilibrium. The corresponding experimental data were well fitted to pseudo-first and -second order models, the latter being the best. The biosorption isotherm data were also well fitted to Temkin, Langmuir, and Freundlich models, showing that several sorption mechanisms may be involved in the Cd(II) biosorption process, which was characterized as exothermic (ΔH0 < 0), feasible, and spontaneous (ΔG0 < 0). In binary (Cd-Pb and Cd-Cu) and ternary (Cd-Pb-Cu) systems, Cu(II) and particularly Pb(II) co-cations exert strong antagonistic effects. Using HNO3, effective good regeneration of WTC was obtained to efficiently remove Cd(II) up to three times.

2.
Molecules ; 28(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36615462

RESUMO

A new biosorbent based on Nostoc commune (NC) cyanobacteria, chemically modified with NaOH (NCM), has been prepared, characterized and tested as an effective biomass to remove Pb(II) in aqueous media. The adsorption capacity of NCM was determined to be qe = 384.6 mg g−1. It is higher than several other biosorbents reported in the literature. Structural and morphological characterization were performed by FTIR, SEM/EDX and point zero of charge pH (pHPZC) measurements. NCM biosorbent showed more porous surfaces than those NC with heterogeneous plates including functional adsorption groups such as OH, C = O, COO−, COH or NH. Optimal Pb(II) adsorption occurred at pH 4.5 and 5.5 with a biomass dose of 0.5 g L−1. The experimental data of the adsorption process were well fitted with the Freundlich-isotherm model and pseudo-2nd order kinetics, which indicated that Pb(II) adsorption was a chemisorption process on heterogeneous surfaces of NCM. According to the thermodynamic parameters, this process was exothermic (∆H0 < 0), feasible and spontaneous (∆G0 < 0). NCM can be regenerated and efficiently reused up to 4 times (%D > 92%). NCM was also tested to remove Pb (%R~98%) and Ca (%R~64%) from real wastewater.


Assuntos
Nostoc commune , Poluentes Químicos da Água , Chumbo , Biomassa , Poluentes Químicos da Água/química , Termodinâmica , Cinética , Adsorção , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...