Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 14003, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228304

RESUMO

Human vocal folds possess outstanding abilities to endure large, reversible deformations and to vibrate up to more than thousand cycles per second. This unique performance mainly results from their complex specific 3D and multiscale structure, which is very difficult to investigate experimentally and still presents challenges using either confocal microscopy, MRI or X-ray microtomography in absorption mode. To circumvent these difficulties, we used high-resolution synchrotron X-ray microtomography with phase retrieval and report the first ex vivo 3D images of human vocal-fold tissues at multiple scales. Various relevant descriptors of structure were extracted from the images: geometry of vocal folds at rest or in a stretched phonatory-like position, shape and size of their layered fibrous architectures, orientation, shape and size of the muscle fibres as well as the set of collagen and elastin fibre bundles constituting these layers. The developed methodology opens a promising insight into voice biomechanics, which will allow further assessment of the micromechanics of the vocal folds and their vibratory properties. This will then provide valuable guidelines for the design of new mimetic biomaterials for the next generation of artificial larynges.


Assuntos
Imageamento Tridimensional/métodos , Síncrotrons/instrumentação , Prega Vocal/anatomia & histologia , Prega Vocal/fisiologia , Microtomografia por Raio-X/métodos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Modelos Anatômicos , Fonação , Voz
2.
J Acoust Soc Am ; 137(2): 832-43, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25698017

RESUMO

In this paper, a multimodal theory accounting for higher order acoustical propagation modes is presented as an extension to the classical plane wave theory. This theoretical development is validated against experiments on vocal tract replicas, obtained using a 3D printer and finite element simulations. Simplified vocal tract geometries of increasing complexity are used to investigate the influence of some geometrical parameters on the acoustical properties of the vocal tract. It is shown that the higher order modes can produce additional resonances and anti-resonances and can also strongly affect the radiated sound. These effects appear to be dependent on the eccentricity and the cross-sectional shape of the geometries. Finally, the comparison between the simulations and the experiments points out the importance of taking visco-thermal losses into account to increase the accuracy of the resonance bandwidths prediction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...