Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1426035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38899156

RESUMO

[This corrects the article DOI: 10.3389/fpls.2024.1328966.].

2.
Front Plant Sci ; 15: 1328966, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550287

RESUMO

Extensive research has focused on exploring the range of genome sizes in eukaryotes, with a particular emphasis on land plants, where significant variability has been observed. Accurate estimation of genome size is essential for various research purposes, but existing sequence-based methods have limitations, particularly for low-coverage datasets. In this study, we introduce LocoGSE, a novel genome size estimator designed specifically for low-coverage datasets generated by genome skimming approaches. LocoGSE relies on mapping the reads on single copy consensus proteins without the need for a reference genome assembly. We calibrated LocoGSE using 430 low-coverage Angiosperm genome skimming datasets and compared its performance against other estimators. Our results demonstrate that LocoGSE accurately predicts monoploid genome size even at very low depth of coverage (<1X) and on highly heterozygous samples. Additionally, LocoGSE provides stable estimates across individuals with varying ploidy levels. LocoGSE fills a gap in sequence-based plant genome size estimation by offering a user-friendly and reliable tool that does not rely on high coverage or reference assemblies. We anticipate that LocoGSE will facilitate plant genome size analysis and contribute to evolutionary and ecological studies in the field. Furthermore, at the cost of an initial calibration, LocoGSE can be used in other lineages.

3.
Evol Lett ; 8(1): 29-42, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370542

RESUMO

Short-term adaptive evolution represents one of the primary mechanisms allowing species to persist in the face of global change. Predicting the adaptive response at the species level requires reliable estimates of the evolutionary potential of traits involved in adaptive responses, as well as understanding how evolutionary potential varies across a species' range. Theory suggests that spatial variation in the fitness landscape due to environmental variation will directly impact the evolutionary potential of traits. However, empirical evidence on the link between environmental variation and evolutionary potential across a species range in the wild is lacking. In this study, we estimate multivariate evolutionary potential (via the genetic variance-covariance matrix, or G-matrix) for six morphological and life history traits in 10 wild populations of great tits (Parus major) distributed across Europe. The G-matrix significantly varies in size, shape, and orientation across populations for both types of traits. For life history traits, the differences in G-matrix are larger when populations are more distant in their climatic niche. This suggests that local climates contribute to shaping the evolutionary potential of phenotypic traits that are strongly related to fitness. However, we found no difference in the overall evolutionary potential (i.e., G-matrix size) between populations closer to the core or the edge of the distribution area. This large-scale comparison of G-matrices across wild populations emphasizes that integrating variation in multivariate evolutionary potential is important to understand and predict species' adaptive responses to new selective pressures.

4.
Nat Ecol Evol ; 8(3): 454-466, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253754

RESUMO

To meet the COP15 biodiversity framework in the European Union (EU), one target is to protect 30% of its land by 2030 through a resilient transnational conservation network. The European Alps are a key hub of this network hosting some of the most extensive natural areas and biodiversity hotspots in Europe. Here we assess the robustness of the current European reserve network to safeguard the European Alps' flora by 2080 using semi-mechanistic simulations. We first highlight that the current network needs strong readjustments as it does not capture biodiversity patterns as well as our conservation simulations. Overall, we predict a strong shift in conservation need through time along latitudes, and from lower to higher elevations as plants migrate upslope and shrink their distribution. While increasing species, trait and evolutionary diversity, migration could also threaten 70% of the resident flora. In the face of global changes, the future European reserve network will need to ensure strong elevation and latitudinal connections to complementarily protect multifaceted biodiversity beyond national borders.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Europa (Continente) , Plantas , União Europeia
5.
Nat Ecol Evol ; 7(9): 1467-1479, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37604875

RESUMO

Dispersal across biogeographic barriers is a key process determining global patterns of biodiversity as it allows lineages to colonize and diversify in new realms. Here we demonstrate that past biogeographic dispersal events often depended on species' traits, by analysing 7,009 tetrapod species in 56 clades. Biogeographic models incorporating body size or life history accrued more statistical support than trait-independent models in 91% of clades. In these clades, dispersal rates increased by 28-32% for lineages with traits favouring successful biogeographic dispersal. Differences between clades in the effect magnitude of life history on dispersal rates are linked to the strength and type of biogeographic barriers and intra-clade trait variability. In many cases, large body sizes and fast life histories facilitate dispersal success. However, species with small bodies and/or slow life histories, or those with average traits, have an advantage in a minority of clades. Body size-dispersal relationships were related to a clade's average body size and life history strategy. These results provide important new insight into how traits have shaped the historical biogeography of tetrapod lineages and may impact present-day and future biogeographic dispersal.


Assuntos
Biodiversidade , Características de História de Vida , Tamanho Corporal , Fenótipo
6.
Am J Bot ; 110(5): e16155, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36912727

RESUMO

PREMISE: Divergence of floral morphology and breeding systems are often expected to be linked to angiosperm diversification and environmental niche divergence. However, available evidence for such relationships is not generalizable due to different taxonomic, geographical and time scales. The Palearctic genus Helianthemum shows the highest diversity of the family Cistaceae in terms of breeding systems, floral traits, and environmental conditions as a result of three recent evolutionary radiations since the Late Miocene. Here, we investigated the tempo and mode of evolution of floral morphology in the genus and its link with species diversification and environmental niche divergence. METHODS: We quantified 18 floral traits from 83 taxa and applied phylogenetic comparative methods using a robust phylogenetic framework based on genotyping-by-sequencing data. RESULTS: We found three different floral morphologies, putatively related to three different breeding systems: type I, characterized by small flowers without herkogamy and low pollen to ovule ratio; type II, represented by large flowers with approach herkogamy and intermediate pollen to ovule ratio; and type III, featured by small flowers with reverse herkogamy and the highest pollen to ovule ratio. Each morphology has been highly conserved across each radiation and has evolved independently of species diversification and ecological niche divergence. CONCLUSIONS: The combined results of trait, niche, and species diversification ultimately recovered a pattern of potentially non-adaptive radiations in Helianthemum and highlight the idea that evolutionary radiations can be decoupled from floral morphology evolution even in lineages that diversified in heterogeneous environments as the Mediterranean Basin.


Assuntos
Cistaceae , Magnoliopsida , Filogenia , Melhoramento Vegetal , Magnoliopsida/genética , Geografia
7.
Ecol Lett ; 26(6): 843-857, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929564

RESUMO

Understanding the mechanisms underlying species distributions and coexistence is both a priority and a challenge for biodiversity hotspots such as the Neotropics. Here, we highlight that Müllerian mimicry, where defended prey species display similar warning signals, is key to the maintenance of biodiversity in the c. 400 species of the Neotropical butterfly tribe Ithomiini (Nymphalidae: Danainae). We show that mimicry drives large-scale spatial association among phenotypically similar species, providing new empirical evidence for the validity of Müller's model at a macroecological scale. Additionally, we show that mimetic interactions drive the evolutionary convergence of species climatic niche, thereby strengthening the co-occurrence of co-mimetic species. This study provides new insights into the importance of mutualistic interactions in shaping both niche evolution and species assemblages at large spatial scales. Critically, in the context of climate change, our results highlight the vulnerability to extinction cascades of such adaptively assembled communities tied by positive interactions.


Assuntos
Mimetismo Biológico , Borboletas , Animais , Biodiversidade , Simbiose
8.
Syst Biol ; 72(3): 491-504, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-36331548

RESUMO

Hybridization is a key mechanism involved in lineage diversification and speciation, especially in ecosystems that experienced repeated environmental oscillations. Recently radiated plant groups, which have evolved in mountain ecosystems impacted by historical climate change provide an excellent model system for studying the impact of gene flow on speciation. We combined organellar (whole-plastome) and nuclear genomic data (RAD-seq) with a cytogenetic approach (rDNA FISH) to investigate the effects of hybridization and introgression on evolution and speciation in the genus Soldanella (snowbells, Primulaceae). Pervasive introgression has already occurred among ancestral lineages of snowbells and has persisted throughout the entire evolutionary history of the genus, regardless of the ecology, cytotype, or distribution range size of the affected species. The highest extent of introgression has been detected in the Carpathian species, which is also reflected in their extensive karyotype variation. Introgression occurred even between species with dysploid and euploid cytotypes, which were considered to be reproductively isolated. The magnitude of introgression detected in snowbells is unprecedented in other mountain genera of the European Alpine System investigated hitherto. Our study stresses the prominent evolutionary role of hybridization in facilitating speciation and diversification on the one hand, but also enriching previously isolated genetic pools. [chloroplast capture; diversification; dysploidy; European Alpine system; introgression; nuclear-cytoplasmic discordance; ribosomal DNA.].


Assuntos
Ecossistema , Primulaceae , Filogenia , Primulaceae/genética , Ecologia , Genoma , DNA Ribossômico
9.
Nat Commun ; 13(1): 6559, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333301

RESUMO

The European Alps are highly rich in species, but their future may be threatened by ongoing changes in human land use and climate. Here, we reconstructed vegetation, temperature, human impact and livestock over the past ~12,000 years from Lake Sulsseewli, based on sedimentary ancient plant and mammal DNA, pollen, spores, chironomids, and microcharcoal. We assembled a highly-complete local DNA reference library (PhyloAlps, 3923 plant taxa), and used this to obtain an exceptionally rich sedaDNA record of 366 plant taxa. Vegetation mainly responded to climate during the early Holocene, while human activity had an additional influence on vegetation from 6 ka onwards. Land-use shifted from episodic grazing during the Neolithic and Bronze Age to agropastoralism in the Middle Ages. Associated human deforestation allowed the coexistence of plant species typically found at different elevational belts, leading to levels of plant richness that characterise the current high diversity of this region. Our findings indicate a positive association between low intensity agropastoral activities and precipitation with the maintenance of the unique subalpine and alpine plant diversity of the European Alps.


Assuntos
Mudança Climática , DNA Antigo , Humanos , Plantas/genética , Lagos , Pólen
10.
Nat Commun ; 13(1): 2750, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585056

RESUMO

There is still limited consensus on the evolutionary history of species-rich temperate alpine floras due to a lack of comparable and high-quality phylogenetic data covering multiple plant lineages. Here we reconstructed when and how European alpine plant lineages diversified, i.e., the tempo and drivers of speciation events. We performed full-plastome phylogenomics and used multi-clade comparative models applied to six representative angiosperm lineages that have diversified in European mountains (212 sampled species, 251 ingroup species total). Diversification rates remained surprisingly steady for most clades, even during the Pleistocene, with speciation events being mostly driven by geographic divergence and bedrock shifts. Interestingly, we inferred asymmetrical historical migration rates from siliceous to calcareous bedrocks, and from higher to lower elevations, likely due to repeated shrinkage and expansion of high elevation habitats during the Pleistocene. This may have buffered climate-related extinctions, but prevented speciation along elevation gradients as often documented for tropical alpine floras.


Assuntos
Evolução Biológica , Magnoliopsida , Clima , Ecossistema , Especiação Genética , Filogenia
11.
Mol Ecol Resour ; 22(5): 2018-2037, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35015377

RESUMO

Low-coverage whole genome shotgun sequencing (or genome skimming) has emerged as a cost-effective method for acquiring genomic data in nonmodel organisms. This method provides sequence information on chloroplast genome (cpDNA), mitochondrial genome (mtDNA) and nuclear ribosomal regions (rDNA), which are over-represented within cells. However, numerous bioinformatic challenges remain to accurately and rapidly obtain such data in organisms with complex genomic structures and rearrangements, in particular for mtDNA in plants or for cpDNA in some plant families. Here we introduce the pipeline ORTHOSKIM, which performs in silico capture of targeted sequences from genomic and transcriptomic libraries without assembling whole organelle genomes. ORTHOSKIM proceeds in three steps: (i) global sequence assembly, (ii) mapping against reference sequences and (iii) target sequence extraction; importantly it also includes a range of quality control tests. Different modes are implemented to capture both coding and noncoding regions of cpDNA, mtDNA and rDNA sequences, along with predefined nuclear sequences (e.g., ultraconserved elements) or collections of single-copy orthologue genes. Moreover, aligned DNA matrices are produced for phylogenetic reconstructions, by performing multiple alignments of the captured sequences. While ORTHOSKIM is suitable for any eukaryote, a case study is presented here, using 114 genome-skimming libraries and four RNA sequencing libraries obtained for two plant families, Primulaceae and Ericaceae, the latter being a well-known problematic family for cpDNA assemblies. ORTHOSKIM recovered with high success rates cpDNA, mtDNA and rDNA sequences, well suited to accurately infer evolutionary relationships within these families. ORTHOSKIM is released under a GPL-3 licence and is available at: https://github.com/cpouchon/ORTHOSKIM.


Assuntos
Genoma de Cloroplastos , Transcriptoma , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , DNA Ribossômico/genética , Genômica/métodos , Filogenia , Análise de Sequência de DNA/métodos
12.
Curr Biol ; 31(24): 5590-5596.e4, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34687610

RESUMO

The evolution of migration routes in birds remains poorly understood as changes in migration strategies are rarely observed on contemporary timescales.1-3 The Richard's Pipit Anthus richardi, a migratory songbird breeding in Siberian grasslands and wintering in Southeast Asia, has only recently become a regular autumn and winter visitor to western Europe. Here, we examine whether this change in occurrence merely reflects an increase in the number of vagrants, that is, "lost" individuals that likely do not manage to return to their breeding grounds, or represents a new migratory strategy.4-6 We show that Richard's Pipits in southwestern Europe are true migrants: the same marked individuals return to southern France in subsequent winters and geo-localization tracking revealed that they originate from the western edge of the known breeding range. They make an astonishing 6,000 km journey from Central Asia across Eurasia, a very unusual longitudinal westward route among Siberian migratory birds.7,8 Climatic niche modeling using citizen-science bird data suggests that the winter niche suitability has increased in southwestern Europe, which may have led to increased winter survival and eventual successful return journey and reproduction of individuals that initially reached Europe as autumn vagrants. This illustrates that vagrancy may have an underestimated role in the emergence of new migratory routes and adaptation to global change in migratory birds.9,10 Whatever the underlying drivers and mechanisms, it constitutes one of the few documented contemporary changes in migration route, and the first longitudinal shift, in a long-distance migratory bird.


Assuntos
Passeriformes , Aves Canoras , Adaptação Fisiológica , Migração Animal , Animais , Estações do Ano
13.
Ecol Evol ; 11(17): 12075-12091, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522362

RESUMO

An important focus of community ecology, including invasion biology, is to investigate functional trait diversity patterns to disentangle the effects of environmental and biotic interactions. However, a notable limitation is that studies usually rely on a small and easy-to-measure set of functional traits, which might not immediately reflect ongoing ecological responses to changing abiotic or biotic conditions, including those that occur at a molecular or physiological level. We explored the potential of using the diversity of expressed genes-functional genomic diversity (FGD)-to understand ecological dynamics of a recent and ongoing alpine invasion. We quantified FGD based on transcriptomic data measured for 26 plant species occurring along adjacent invaded and pristine streambeds. We used an RNA-seq approach to summarize the overall number of expressed transcripts and their annotations to functional categories, and contrasted this with functional trait diversity (FTD) measured from a suite of characters that have been traditionally considered in plant ecology. We found greater FGD and FTD in the invaded community, independent of differences in species richness. However, the magnitude of functional dispersion was greater from the perspective of FGD than from FTD. Comparing FGD between congeneric alien-native species pairs, we did not find many significant differences in the proportion of genes whose annotations matched functional categories. Still, native species with a greater relative abundance in the invaded community compared with the pristine tended to express a greater fraction of genes at significant levels in the invaded community, suggesting that changes in FGD may relate to shifts in community composition. Comparisons of diversity patterns from the community to the species level offer complementary insights into processes and mechanisms driving invasion dynamics. FGD has the potential to illuminate cryptic changes in ecological diversity, and we foresee promising avenues for future extensions across taxonomic levels and macro-ecosystems.

14.
Mol Phylogenet Evol ; 163: 107238, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34197899

RESUMO

The biogeographic history and the degree of environmental niche conservatism provide essential clues to decipher the underlying macroevolutionary processes of species diversification and to understand contemporary patterns of biodiversity. The genus Helianthemum constitutes an excellent case study to investigate the impact of the geo-climatic changes and the environmental niche shifts on the origins of plant species diversity in the Mediterranean hotspot. It is a palearctic species-rich lineage with c. 140 species and subspecies mostly belonging to three distinct evolutionary radiations, almost confined to the Mediterranean region and occurring across varied environmental conditions. In this work, we studied the ample and rapid diversification of the genus Helianthemum across its whole distribution range by performing phylogenetic reconstructions of ancestral ranges and environmental niche evolution. We observed a striking synchrony of biogeographic movements with niche shifts between the three major clades of the genus Helianthemum, likely related to the geo-climatic events occurred in the Mediterranean Basin since the Upper Miocene. In particular, Late Miocene and Early Pliocene were dominated by episodes of range expansions, the Late Pliocene by range contraction and vicariance events, and Pleistocene by most intense environmental niche shifts and in-situ diversification. Our study also provides evidence for four main environmental niches in Helianthemum (i.e., Mediterranean, subdesert, humid-montane and subtropical-insular) and a tendency toward environmental niche conservatism within different subclades, with few niche shifts mostly occurring from Mediterranean ancestors. The relative longer time spent in Mediterranean areas by the ancestors of Helianthemum suggests that the larger species diversity observed in the Mediterranean (i.e. Northern Africa and Southern Europe) may have been generated by a time-for-speciation effect reinforced by environmental niche conservatism. Overall, our work highlights the role of the Mediterranean Basin as a 'cradle of diversity' and an 'evolutionary hub', facilitating the environmental transitions and determining the building up of a global plant biodiversity hotspot.


Assuntos
Evolução Biológica , Cistaceae , Ecossistema , Região do Mediterrâneo , Filogenia
15.
Sci Rep ; 11(1): 11128, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045566

RESUMO

High elevation temperate mountains have long been considered species poor owing to high extinction or low speciation rates during the Pleistocene. We performed a phylogenetic and population genomic investigation of an emblematic high-elevation plant clade (Androsace sect. Aretia, 31 currently recognized species), based on plant surveys conducted during alpinism expeditions. We inferred that this clade originated in the Miocene and continued diversifying through Pleistocene glaciations, and discovered three novel species of Androsace dwelling on different bedrock types on the rooftops of the Alps. This highlights that temperate high mountains have been cradles of plant diversity even during the Pleistocene, with in-situ speciation driven by the combined action of geography and geology. Our findings have an unexpected historical relevance: H.-B. de Saussure likely observed one of these species during his 1788 expedition to the Mont Blanc and we describe it here, over two hundred years after its first sighting.


Assuntos
Altitude , Biodiversidade , Plantas , Geografia , Filogenia
16.
Am J Bot ; 108(1): 113-128, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33426651

RESUMO

PREMISE: Events of accelerated species diversification represent one of Earth's most celebrated evolutionary outcomes. Northern Andean high-elevation ecosystems, or páramos, host some plant lineages that have experienced the fastest diversification rates, likely triggered by ecological opportunities created by mountain uplifts, local climate shifts, and key trait innovations. However, the mechanisms behind rapid speciation into the new adaptive zone provided by these opportunities have long remained unclear. METHODS: We address this issue by studying the Venezuelan clade of Espeletia, a species-rich group of páramo-endemics showing a dazzling ecological and morphological diversity. We performed several comparative analyses to study both lineage and trait diversification, using an updated molecular phylogeny of this plant group. RESULTS: We showed that sets of either vegetative or reproductive traits have conjointly diversified in Espeletia along different vegetation belts, leading to adaptive syndromes. Diversification in vegetative traits occurred earlier than in reproductive ones. The rate of species and morphological diversification showed a tendency to slow down over time, probably due to diversity dependence. We also found that closely related species exhibit significantly more overlap in their geographic distributions than distantly related taxa, suggesting that most events of ecological divergence occurred at close geographic proximity within páramos. CONCLUSIONS: These results provide compelling support for a scenario of small-scale ecological divergence along multiple ecological niche dimensions, possibly driven by competitive interactions between species, and acting sequentially over time in a leapfrog pattern.


Assuntos
Asteraceae , Radiação , Evolução Biológica , Ecossistema , Especiação Genética , Filogenia
17.
Plants (Basel) ; 9(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244605

RESUMO

Genome skimming has the potential for generating large data sets for DNA barcoding and wider biodiversity genomic studies, particularly via the assembly and annotation of full chloroplast (cpDNA) and nuclear ribosomal DNA (nrDNA) sequences. We compare the success of genome skims of 2051 herbarium specimens from Norway/Polar regions with 4604 freshly collected, silica gel dried specimens mainly from the European Alps and the Carpathians. Overall, we were able to assemble the full chloroplast genome for 67% of the samples and the full nrDNA cluster for 86%. Average insert length, cover and full cpDNA and rDNA assembly were considerably higher for silica gel dried than herbarium-preserved material. However, complete plastid genomes were still assembled for 54% of herbarium samples compared to 70% of silica dried samples. Moreover, there was comparable recovery of coding genes from both tissue sources (121 for silica gel dried and 118 for herbarium material) and only minor differences in assembly success of standard barcodes between silica dried (89% ITS2, 96% matK and rbcL) and herbarium material (87% ITS2, 98% matK and rbcL). The success rate was > 90% for all three markers in 1034 of 1036 genera in 160 families, and only Boraginaceae worked poorly, with 7 genera failing. Our study shows that large-scale genome skims are feasible and work well across most of the land plant families and genera we tested, independently of material type. It is therefore an efficient method for increasing the availability of plant biodiversity genomic data to support a multitude of downstream applications.

18.
Syst Biol ; 69(3): 445-461, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589325

RESUMO

C$_{4}$ photosynthesis is a complex trait that sustains fast growth and high productivity in tropical and subtropical conditions and evolved repeatedly in flowering plants. One of the major C$_{4}$ lineages is Andropogoneae, a group of $\sim $1200 grass species that includes some of the world's most important crops and species dominating tropical and some temperate grasslands. Previous efforts to understand C$_{4}$ evolution in the group have compared a few model C$_{4}$ plants to distantly related C$_{3}$ species so that changes directly responsible for the transition to C$_{4}$ could not be distinguished from those that preceded or followed it. In this study, we analyze the genomes of 66 grass species, capturing the earliest diversification within Andropogoneae as well as their C$_{3}$ relatives. Phylogenomics combined with molecular dating and analyses of protein evolution show that many changes linked to the evolution of C$_{4}$ photosynthesis in Andropogoneae happened in the Early Miocene, between 21 and 18 Ma, after the split from its C$_{3}$ sister lineage, and before the diversification of the group. This initial burst of changes was followed by an extended period of modifications to leaf anatomy and biochemistry during the diversification of Andropogoneae, so that a single C$_{4}$ origin gave birth to a diversity of C$_{4}$ phenotypes during 18 million years of speciation events and migration across geographic and ecological spaces. Our comprehensive approach and broad sampling of the diversity in the group reveals that one key transition can lead to a plethora of phenotypes following sustained adaptation of the ancestral state. [Adaptive evolution; complex traits; herbarium genomics; Jansenelleae; leaf anatomy; Poaceae; phylogenomics.].


Assuntos
Adaptação Fisiológica/genética , Fotossíntese/genética , Poaceae/classificação , Poaceae/genética , Biodiversidade , Evolução Biológica , Especificidade da Espécie
19.
Nat Commun ; 10(1): 5691, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831803

RESUMO

Understanding the processes that drive the dramatic changes in biodiversity along the productivity gradient remains a major challenge. Insight from simple, bivariate relationships so far has been limited. We combined >11,000 community plots in the French Alps with a molecular phylogeny and trait information for >1200 plant species to simultaneously investigate the relationships between all major biodiversity dimensions and satellite-sensed productivity. Using an approach that tests for differential effects of species dominance, species similarity and the interplay between phylogeny and traits, we demonstrate that unimodal productivity-biodiversity relationships only dominate for taxonomic diversity. In forests, trait and phylogenetic diversity typically increase with productivity, while in grasslands, relationships shift from unimodal to declining with greater land-use intensity. High productivity may increase trait/phylogenetic diversity in ecosystems with few external constraints (forests) by promoting complementary strategies, but under external constraints (managed grasslands) successful strategies are similar and thus the best competitors may be selected.


Assuntos
Biodiversidade , Dispersão Vegetal , Plantas/genética , Florestas , França , Pradaria , Filogenia
20.
Glob Chang Biol ; 25(12): 4081-4091, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31368188

RESUMO

The timing of annual events such as reproduction is a critical component of how free-living organisms respond to ongoing climate change. This may be especially true in the Arctic, which is disproportionally impacted by climate warming. Here, we show that Arctic seabirds responded to climate change by moving the start of their reproduction earlier, coincident with an advancing onset of spring and that their response is phylogenetically and spatially structured. The phylogenetic signal is likely driven by seabird foraging behavior. Surface-feeding species advanced their reproduction in the last 35 years while diving species showed remarkably stable breeding timing. The earlier reproduction for Arctic surface-feeding birds was significant in the Pacific only, where spring advancement was most pronounced. In both the Atlantic and Pacific, seabirds with a long breeding season showed a greater response to the advancement of spring than seabirds with a short breeding season. Our results emphasize that spatial variation, phylogeny, and life history are important considerations in seabird phenological response to climate change and highlight the key role played by the species' foraging behavior.


Assuntos
Migração Animal , Aves , Animais , Regiões Árticas , Mudança Climática , Filogenia , Reprodução , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...