Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38171012

RESUMO

Objective. Prior to radiation therapy planning, accurate delineation of gross tumour volume (GTVs) and organs at risk (OARs) is crucial. In the current clinical practice, tumour delineation is performed manually by radiation oncologists, which is time-consuming and prone to large inter-observer variability. With the advent of deep learning (DL) models, automated contouring has become possible, speeding up procedures and assisting clinicians. However, these tools are currently used in the clinic mostly for contouring OARs, since these systems are not reliable yet for contouring GTVs. To improve the reliability of these systems, researchers have started exploring the topic of probabilistic neural networks. However, there is still limited knowledge of the practical implementation of such networks in real clinical settings.Approach. In this work, we developed a 3D probabilistic system that generates DL-based uncertainty maps for lung cancer CT segmentations. We employed the Monte Carlo (MC) dropout technique to generate probabilistic and uncertainty maps, while the model calibration was evaluated by using reliability diagrams. A clinical validation was conducted in collaboration with a radiation oncologist to qualitatively assess the value of the uncertainty estimates. We also proposed two novel metrics, namely mean uncertainty (MU) and relative uncertainty volume (RUV), as potential indicators for clinicians to assess the need for independent visual checks of the DL-based segmentation. Main results. Our study showed that uncertainty mapping effectively identified cases of under or over-contouring. Although the overconfidence of the model, a strong correlation was observed between the clinical opinion and MU metric. Moreover, both MU and RUV revealed high AUC values in discretising between low and high uncertainty cases.Significance. Our study is one of the first attempts to clinically validate uncertainty estimates in DL-based contouring. The two proposed metrics exhibited promising potential as indicators for clinicians to independently assess the quality of tumour delineation.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Reprodutibilidade dos Testes , Incerteza , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco , Processamento de Imagem Assistida por Computador/métodos
2.
IEEE Trans Med Robot Bionics ; 4(1): 94-105, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35582701

RESUMO

In pathology and legal medicine, the histopathological and microbiological analysis of tissue samples from infected deceased is a valuable information for developing treatment strategies during a pandemic such as COVID-19. However, a conventional autopsy carries the risk of disease transmission and may be rejected by relatives. We propose minimally invasive biopsy with robot assistance under CT guidance to minimize the risk of disease transmission during tissue sampling and to improve accuracy. A flexible robotic system for biopsy sampling is presented, which is applied to human corpses placed inside protective body bags. An automatic planning and decision system estimates optimal insertion point. Heat maps projected onto the segmented skin visualize the distance and angle of insertions and estimate the minimum cost of a puncture while avoiding bone collisions. Further, we test multiple insertion paths concerning feasibility and collisions. A custom end effector is designed for inserting needles and extracting tissue samples under robotic guidance. Our robotic post-mortem biopsy (RPMB) system is evaluated in a study during the COVID-19 pandemic on 20 corpses and 10 tissue targets, 5 of them being infected with SARS-CoV-2. The mean planning time including robot path planning is 5.72±167s. Mean needle placement accuracy is 7.19± 422mm.

3.
Med Image Anal ; 78: 102382, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35183875

RESUMO

We present Posterior Temperature Optimized Bayesian Inverse Models (POTOBIM), an unsupervised Bayesian approach to inverse problems in medical imaging using mean-field variational inference with a fully tempered posterior. Bayesian methods exhibit useful properties for approaching inverse tasks, such as tomographic reconstruction or image denoising. A suitable prior distribution introduces regularization, which is needed to solve the ill-posed problem and reduces overfitting the data. In practice, however, this often results in a suboptimal posterior temperature, and the full potential of the Bayesian approach is not being exploited. In POTOBIM, we optimize both the parameters of the prior distribution and the posterior temperature with respect to reconstruction accuracy using Bayesian optimization with Gaussian process regression. Our method is extensively evaluated on four different inverse tasks on a variety of modalities with images from public data sets and we demonstrate that an optimized posterior temperature outperforms both non-Bayesian and Bayesian approaches without temperature optimization. The use of an optimized prior distribution and posterior temperature leads to improved accuracy and uncertainty estimation and we show that it is sufficient to find these hyperparameters per task domain. Well-tempered posteriors yield calibrated uncertainty, which increases the reliability in the predictions. Our source code is publicly available at github.com/Cardio-AI/mfvi-dip-mia.


Assuntos
Diagnóstico por Imagem , Teorema de Bayes , Humanos , Distribuição Normal , Reprodutibilidade dos Testes , Temperatura
4.
Int J Comput Assist Radiol Surg ; 14(3): 483-492, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30649670

RESUMO

PURPOSE: Automated segmentation of anatomical structures in medical image analysis is a prerequisite for autonomous diagnosis as well as various computer- and robot-aided interventions. Recent methods based on deep convolutional neural networks (CNN) have outperformed former heuristic methods. However, those methods were primarily evaluated on rigid, real-world environments. In this study, existing segmentation methods were evaluated for their use on a new dataset of transoral endoscopic exploration. METHODS: Four machine learning-based methods SegNet, UNet, ENet and ErfNet were trained with supervision on a novel 7-class dataset of the human larynx. The dataset contains 536 manually segmented images from two patients during laser incisions. The Intersection-over-Union (IoU) evaluation metric was used to measure the accuracy of each method. Data augmentation and network ensembling were employed to increase segmentation accuracy. Stochastic inference was used to show uncertainties of the individual models. Patient-to-patient transfer was investigated using patient-specific fine-tuning. RESULTS: In this study, a weighted average ensemble network of UNet and ErfNet was best suited for the segmentation of laryngeal soft tissue with a mean IoU of 84.7%. The highest efficiency was achieved by ENet with a mean inference time of 9.22 ms per image. It is shown that 10 additional images from a new patient are sufficient for patient-specific fine-tuning. CONCLUSION: CNN-based methods for semantic segmentation are applicable to endoscopic images of laryngeal soft tissue. The segmentation can be used for active constraints or to monitor morphological changes and autonomously detect pathologies. Further improvements could be achieved by using a larger dataset or training the models in a self-supervised manner on additional unlabeled data.


Assuntos
Laringoscopia , Laringe/patologia , Redes Neurais de Computação , Endoscopia , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Semântica , Prega Vocal/patologia
5.
Int J Comput Assist Radiol Surg ; 11(12): 2325-2337, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27250855

RESUMO

PURPOSE: Recent research has revealed that incision planning in laser surgery deploying stylus and tablet outperforms micromanipulator control. However, vision-based adaption to dynamic surgical scenes has not been addressed so far. In this study, scene motion compensation for tablet-based planning by means of tissue deformation tracking is discussed. METHODS: A stereo-based method for motion tracking with piecewise affine deformation modeling is presented. Proposed parametrization relies on the epipolar constraint to enforce left-right consistency in the energy minimization problem. Furthermore, the method implements illumination-invariant tracking and appearance-based occlusion detection. Performance is assessed on laparoscopic and laryngeal in vivo data. In particular, tracking accuracy is measured under various conditions such as occlusions and simulated laser cuttings. Experimental validation is extended to a user study conducted on a tablet-based interface that integrates the tracking for image stabilization. RESULTS: Tracking accuracy measurement reveals a root-mean-square error of 2.45 mm for the laparoscopic and 0.41 mm for the laryngeal dataset. Results successfully demonstrate stereoscopic tracking under changes in illumination, translation, rotation and scale. In particular, proposed occlusion detection scheme can increase robustness against tracking failure. Moreover, assessed user performance indicates significantly increased path tracing accuracy and usability if proposed tracking is deployed to stabilize the view during free-hand path definition. CONCLUSION: The presented algorithm successfully extends piecewise affine deformation tracking to stereo vision taking the epipolar constraint into account. Improved surgical performance as demonstrated for laser incision planning highlights the potential of presented method regarding further applications in computer-assisted surgery.


Assuntos
Interpretação de Imagem Assistida por Computador , Terapia a Laser/métodos , Cirurgia Assistida por Computador , Algoritmos , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Laringe/cirurgia , Reconhecimento Automatizado de Padrão , Cirurgia Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...