Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(23): 5199-5207.e4, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37913769

RESUMO

Viruses are the most abundant biological entities in the world's oceans, where they play important ecological and biogeochemical roles. Metagenomics is revealing new groups of eukaryotic viruses, although disconnected from known hosts. Among these are the recently described mirusviruses, which share some similarities with herpesviruses.1 50 years ago, "herpes-type" viral particles2 were found in a thraustochytrid member of the labyrinthulomycetes, a diverse group of abundant and ecologically important marine eukaryotes,3,4 but could not be further characterized by methods then available. Long-read sequencing has allowed us to connect the biology of mirusviruses and thraustochytrids. We sequenced the genome of the genetically tractable model thraustochytrid Aurantiochytrium limacinum ATCC MYA-1381 and found that its 26 linear chromosomes have an extraordinary configuration. Subtelomeric ribosomal DNAs (rDNAs) found at all chromosome ends are interspersed with long repeated sequence elements denoted as long repeated-telomere and rDNA spacers (LORE-TEARS). We identified two genomic elements that are related to mirusvirus genomes. The first is a ∼300-kbp episome (circular element 1 [CE1]) present at a high copy number. Strikingly, the second, distinct, mirusvirus-like element is integrated between two sets of rDNAs and LORE-TEARS at the left end of chromosome 15 (LE-Chr15). Similar to metagenomically derived mirusviruses, these putative A. limacinum mirusviruses have a virion module related to that of herpesviruses along with an informational module related to nucleocytoplasmic large DNA viruses (NCLDVs). CE1 and LE-Chr15 bear striking similarities to episomal and endogenous latent forms of herpesviruses, respectively, and open new avenues of research into marine virus-host interactions.


Assuntos
Vírus , DNA Ribossômico , Genoma , Heterocromatina , Eucariotos , Telômero , Filogenia
2.
J Evol Biol ; 34(12): 1901-1916, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34498333

RESUMO

Until recently, most viruses detected and characterized were of economic significance, associated with agricultural and medical diseases. This was certainly true for the eukaryote-infecting circular Rep (replication-associated protein)-encoding single-stranded DNA (CRESS DNA) viruses, which were thought to be a relatively small group of viruses. With the explosion of metagenomic sequencing over the past decade and increasing use of rolling-circle replication for sequence amplification, scientists have identified and annotated copious numbers of novel CRESS DNA viruses - many without known hosts but which have been found in association with eukaryotes. Similar advances in cellular genomics have revealed that many eukaryotes have endogenous sequences homologous to viral Reps, which not only provide 'fossil records' to reconstruct the evolutionary history of CRESS DNA viruses but also reveal potential host species for viruses known by their sequences alone. The Rep protein is a conserved protein that all CRESS DNA viruses use to assist rolling-circle replication that is known to be endogenized in a few eukaryotic species (notably tobacco and water yam). A systematic search for endogenous Rep-like sequences in GenBank's non-redundant eukaryotic database was performed using tBLASTn. We utilized relaxed search criteria for the capture of integrated Rep sequence within eukaryotic genomes, identifying 93 unique species with an endogenized fragment of Rep in their nuclear, plasmid (one species), mitochondrial (six species) or chloroplast (eight species) genomes. These species come from 19 different phyla, scattered across the eukaryotic tree of life. Exogenous and endogenous CRESS DNA viral Rep tree topology suggested potential hosts for one family of uncharacterized viruses and supports a primarily fungal host range for genomoviruses.


Assuntos
Brassicaceae , Eucariotos , Vírus de DNA/genética , DNA de Cadeia Simples , Eucariotos/genética , Genoma Viral , Filogenia
3.
J Gen Virol ; 102(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34310272

RESUMO

Cassava mosaic disease (CMD) represents a serious threat to cassava, a major root crop for more than 300 million Africans. CMD is caused by single-stranded DNA begomoviruses that evolve rapidly, making it challenging to develop durable disease resistance. In addition to the evolutionary forces of mutation, recombination and reassortment, factors such as climate, agriculture practices and the presence of DNA satellites may impact viral diversity. To gain insight into the factors that alter and shape viral diversity in planta, we used high-throughput sequencing to characterize the accumulation of nucleotide diversity after inoculation of infectious clones corresponding to African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV) in the susceptible cassava landrace Kibandameno. We found that vegetative propagation had a significant effect on viral nucleotide diversity, while temperature and a satellite DNA did not have measurable impacts in our study. EACMCV diversity increased linearly with the number of vegetative propagation passages, while ACMV diversity increased for a time and then decreased in later passages. We observed a substitution bias toward C→T and G→A for mutations in the viral genomes consistent with field isolates. Non-coding regions excluding the promoter regions of genes showed the highest levels of nucleotide diversity for each genome component. Changes in the 5' intergenic region of DNA-A resembled the sequence of the cognate DNA-B sequence. The majority of nucleotide changes in coding regions were non-synonymous, most with predicted deleterious effects on protein structure, indicative of relaxed selection pressure over six vegetative passages. Overall, these results underscore the importance of knowing how cropping practices affect viral evolution and disease progression.


Assuntos
Begomovirus/genética , Variação Genética , Manihot/crescimento & desenvolvimento , Manihot/virologia , Doenças das Plantas/virologia , Sequência de Bases , Begomovirus/fisiologia , Códon , DNA Intergênico , DNA Viral/genética , Evolução Molecular , Genoma Viral , Mutação , Polimorfismo de Nucleotídeo Único , Vírus Satélites/genética , Vírus Satélites/fisiologia , Deleção de Sequência , Temperatura , Proteínas Virais/genética
4.
G3 (Bethesda) ; 7(11): 3659-3668, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28916647

RESUMO

Chromosomal inversions are a ubiquitous feature of genetic variation. Theoretical models describe several mechanisms by which inversions can drive adaptation and be maintained as polymorphisms. While inversions have been shown previously to be under selection, or contain genetic variation under selection, the specific phenotypic consequences of inversions leading to their maintenance remain unclear. Here we use genomic sequence and expression data from the Drosophila Genetic Reference Panel (DGRP) to explore the effects of two cosmopolitan inversions, In(2L)t and In(3R)Mo, on patterns of transcriptional variation. We demonstrate that each inversion has a significant effect on transcript abundance for hundreds of genes across the genome. Inversion-affected loci (IAL) appear both within inversions as well as on unlinked chromosomes. Importantly, IAL do not appear to be influenced by the previously reported genome-wide expression correlation structure. We found that five genes involved with sterol uptake, four of which are Niemann-Pick Type 2 orthologs, are upregulated in flies with In(3R)Mo but do not have SNPs in linkage disequilibrium (LD) with the inversion. We speculate that this upregulation is driven by genetic variation in mod(mdg4) that is in LD with In(3R)Mo We find that there is little evidence for a regional or position effect of inversions on gene expression at the chromosomal level, but do find evidence for the distal breakpoint of In(3R)Mo interrupting one gene and possibly disassociating the two flanking genes from regulatory elements.


Assuntos
Inversão Cromossômica , Drosophila melanogaster/genética , Polimorfismo Genético , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Locos de Características Quantitativas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Sci Rep ; 7: 42766, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28220806

RESUMO

Very little information exists for long-term changes in genetic variation in natural populations. Here we take the unique opportunity to compare a set of data for SNPs in 15 metabolic genes from eastern US collections of Drosophila melanogaster that span a large latitudinal range and represent two collections separated by 12 to 13 years. We also expand this to a 22-year interval for the Adh gene and approximately 30 years for the G6pd and Pgd genes. During these intervals, five genes showed a statistically significant change in average SNP allele frequency corrected for latitude. While much remains unchanged, we see five genes where latitudinal clines have been lost or gained and two where the slope significantly changes. The long-term frequency shift towards a southern favored Adh S allele reported in Australia populations is not observed in the eastern US over a period of 21 years. There is no general pattern of southern-favored or northern-favored alleles increasing in frequency across the genes. This observation points to the fluid nature of some allelic variation over this time period and the action of selective responses or migration that may be more regional than uniformly imposed across the cline.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Frequência do Gene , Animais , Polimorfismo de Nucleotídeo Único , Seleção Genética
6.
Proc Biol Sci ; 282(1815)2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26378219

RESUMO

There is a connection between nutrient inputs, energy-sensing pathways, lifespan variation and aging. Despite the role of metabolic enzymes in energy homeostasis and their metabolites as nutrient signals, little is known about how their gene expression impacts lifespan. In this report, we use P-element mutagenesis in Drosophila to study the effect on lifespan of reductions in expression of seven central metabolic enzymes, and contrast the effects on normal diet and dietary restriction. The major observation is that for five of seven genes, the reduction of gene expression extends lifespan on one or both diets. Two genes are involved in redox balance, and we observe that lower activity genotypes significantly extend lifespan. The hexokinases also show extension of lifespan with reduced gene activity. Since both affect the ATP/ADP ratio, this connects with the role of AMP-activated protein kinase as an energy sensor in regulating lifespan and mediating caloric restriction. These genes possess significant expression variation in natural populations, and our experimental genotypes span this level of natural activity variation. Our studies link the readout of energy state with the perturbation of the genes of central metabolism and demonstrate their effect on lifespan.


Assuntos
Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Enzimas/metabolismo , Privação de Alimentos , Longevidade/genética , Envelhecimento/genética , Fenômenos Fisiológicos da Nutrição Animal/genética , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Expressão Gênica , Mutagênese Sítio-Dirigida , Oxirredução
7.
Proc Biol Sci ; 282(1800): 20142688, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25520361

RESUMO

In this report, we examine the hypothesis that the drivers of latitudinal selection observed in the eastern US Drosophila melanogaster populations are reiterated within seasons in a temperate orchard population in Pennsylvania, USA. Specifically, we ask whether alleles that are apparently favoured in northern populations are also favoured early in the spring, and decrease in frequency from the spring to autumn with the population expansion. We use SNP data collected for 46 metabolic genes and 128 SNPs representing the central metabolic pathway and examine for the aggregate SNP allele frequencies whether the association of allele change with latitude and that with increasing days of spring-autumn season are reversed. Testing by random permutation, we observe a highly significant negative correlation between these associations that is consistent with this expectation. This correlation is stronger when we confine our analysis to only those alleles that show significant latitudinal changes. This pattern is not caused by association with chromosomal inversions. When data are resampled using SNPs for amino acid change the relationship is not significant but is supported when SNPs associated with cis-expression are only considered. Our results suggest that climate factors driving latitudinal molecular variation in a metabolic pathway are related to those operating on a seasonal level within populations.


Assuntos
Drosophila melanogaster/genética , Adaptação Fisiológica/genética , Alelos , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Estações do Ano , Seleção Genética
8.
Mol Biol Evol ; 31(8): 2032-41, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24770333

RESUMO

In this article, we couple the geographic variation in 127 single-nucleotide polymorphism (SNP) frequencies in genes of 46 enzymes of central metabolism with their associated cis-expression variation to predict latitudinal or climatic-driven gene expression changes in the metabolic architecture of Drosophila melanogaster. Forty-two percent of the SNPs in 65% of the genes show statistically significant clines in frequency with latitude across the 20 local population samples collected from southern Florida to Ontario. A number of SNPs in the screened genes are also associated with significant expression variation within the Raleigh population from North Carolina. A principal component analysis of the full variance-covariance matrix of latitudinal changes in SNP-associated standardized gene expression allows us to identify those major genes in the pathway and its associated branches that are likely targets of natural selection. When embedded in a central metabolic context, we show that these apparent targets are concentrated in the genes of the upper glycolytic pathway and pentose shunt, those controlling glycerol shuttle activity, and finally those enzymes associated with the utilization of glutamate and pyruvate. These metabolites possess high connectivity and thus may be the points where flux balance can be best shifted. We also propose that these points are conserved points associated with coupling energy homeostasis and energy sensing in mammals. We speculate that the modulation of gene expression at specific points in central metabolism that are associated with shifting flux balance or possibly energy-state sensing plays a role in adaptation to climatic variation.


Assuntos
Aclimatação , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/fisiologia , Glicólise , Redes e Vias Metabólicas , Animais , Regulação da Expressão Gênica , Variação Genética , Mamíferos/metabolismo , Filogeografia , Polimorfismo de Nucleotídeo Único , Seleção Genética
9.
Evolution ; 68(2): 538-48, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24303812

RESUMO

Cosmopolitan populations of Drosophila melanogaster have co-opted a form of reproductive diapause to overwinter in northern populations. Polymorphism in the couch potato gene has been implicated in genetic variation for this diapause trait. Using a collection of 20 populations from Florida to Canada and 11 collections from 3 years in a Pennsylvania orchard, we estimated the allele frequencies for 15 single nucleotide polymorphisms (SNPs) in the couch potato gene. These include the specific polymorphism associated with diapause inducability. We find that the SNP polymorphism, 48034(A/T), is correlated with latitude and its frequencies are predicted by the incidence of diapause trait. We find that the clinal patterns for cpo SNPs sampled in 1997 are similar to the same SNPs sampled in 2009-2010. SNPs that show apparent associations with cpo expression are also clinal with the low-expression allele increasing in frequency, as would be predicted from functional knockout studies of cpo. Finally, we see a significant pattern where the frequency of the diapause-causing allele drops in frequency during the summer season, consistent with the drop in the incidence of the diapause trait. The selection required to drive this response is large, roughly 24% to 59% per generation depending on the degree of dominance.


Assuntos
Diapausa de Inseto/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Drosophila melanogaster/fisiologia , Evolução Molecular , Frequência do Gene
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...