Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38997955

RESUMO

The broad global distribution of freshwater clams belonging to the genus Corbicula is driven by multiple hermaphroditic lineages. These lineages, characterized by shared morphological traits and phenotypic plasticity, pose challenges to morphological identification. Genetic markers, such as the mitochondrial COI gene, play a crucial role in delineating these lineages and their ranges. Morphotypes represent observed phenotypic variations, while lineages are defined based on genetic markers. Here, we comprehensively review Corbicula's distribution in Argentina, discriminate extant lineages based on both morphological and genetic (COI) data, and describe variations in internal and external morphologies using 15 Argentine populations. Genetic analyses identified two mitochondrial lineages: the AR morphotype (FW5 haplotype) and CS morphotype (FW17 haplotype). Strikingly, despite having similar vectors, origins, and invasive stages, Corbicula lineages exhibit virtually segregated distributions. However, mitochondrial haplotypes are found in sympatry mainly in northeastern Argentina where individuals with intermediate morphotypes exist, suggesting the presence of hybrids due to maternal genome retention. These findings contribute to the clarification of the identity and distribution of Corbicula lineages in Argentina, where the genus has been found for over half a century. Similar studies are needed in other areas to better understand the invasion patterns of this successful and adaptable group.

2.
Mol Ecol Resour ; 21(7): 2333-2349, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34097821

RESUMO

Previous studies of butterfly diversification in the Neotropics have focused on Amazonia and the tropical Andes, while southern regions of the continent have received little attention. To address the gap in knowledge about the Lepidoptera of temperate South America, we analysed over 3000 specimens representing nearly 500 species from Argentina for a segment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Representing 42% of the country's butterfly fauna, collections targeted species from the Atlantic and Andean forests, and biodiversity hotspots that were previously connected but are now isolated. We assessed COI effectiveness for species discrimination and identification and how its performance was affected by geographic distances and taxon coverage. COI data also allowed to study patterns of genetic variation across Argentina, particularly between populations in the Atlantic and Andean forests. Our results show that COI discriminates species well, but that identification success is reduced on average by ~20% as spatial and taxonomic coverage rises. We also found that levels of genetic variation are associated with species' spatial distribution type, a pattern which might reflect differences in their dispersal and colonization abilities. In particular, intraspecific distance between populations in the Atlantic and Andean forests was significantly higher in species with disjunct distributions than in those with a continuous range. All splits between lineages in these forests dated to the Pleistocene, but divergence dates varied considerably, suggesting that historical connections between the Atlantic and Andean forests have differentially affected their shared butterfly fauna. Our study supports the fact that large-scale assessments of mitochondrial DNA variation are a powerful tool for evolutionary studies.


Assuntos
Borboletas , Animais , Brasil , Borboletas/genética , Florestas , Variação Genética , Filogenia , Filogeografia
3.
Mol Ecol ; 29(12): 2137-2149, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32056321

RESUMO

The riverine barrier hypothesis proposes that large rivers represent geographical barriers to gene flow for terrestrial organisms, leading to population differentiation and ultimately allopatric speciation. Here we assess for the first time if the subtropical Paraná-Paraguay River system in the Del Plata basin, second in size among South American drainages, acts as a barrier to gene flow for birds. We analysed the degree of mitochondrial and nuclear genomic differentiation in seven species with known subspecies divided by the Paraná-Paraguay River axis. Only one species showed genetic differentiation concordant with the current river channel, but another five species have an east/west genetic split broadly coincident with the Paraná River's dynamic palaeochannel, suggesting this fluvial axis has had a past role in shaping present-day genetic structure. Moreover, dating analyses show that these splits have been asynchronous, with species responding differently to the riverine barrier. Comparisons informed by the geological history of the Paraná River and its influence on the ecological and climatic differences among ecoregions in the study area further bolster the finding that responses to this geographical barrier have been species-specific.


Assuntos
Evolução Biológica , Aves/classificação , Fluxo Gênico , Rios , Animais , Geografia , América do Sul , Especificidade da Espécie
4.
Mol Ecol ; 28(7): 1730-1747, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30636341

RESUMO

Avian diversity in the Neotropics has been traditionally attributed to the effect of vicariant forces promoting speciation in allopatry. Recent studies have shown that phylogeographical patterns shared among codistributed species cannot be explained by a single vicariant event, as species responses to a common barrier depend on the biological attributes of each taxon. The open vegetation corridor (OVC) isolates Amazonia and the Andean forests from the Atlantic Forest, creating a notorious pattern of avian taxa that are disjunctly codistributed in these forests. Here, we studied and compared the evolutionary histories of Ramphotrigon megacephalum and Pipraeidea melanonota, two passerines with allopatric populations east and west of the OVC that represent different subspecies. These species differ in their biological attributes: R. megacephalum is a sedentary, forest specialist mostly confined to bamboo understorey, whereas P. melanonota is a seasonal migrant and generalist species that ranges in a variety of closed and semi-open environments. We performed genetic and genomic analyses, complemented with the study of coloration and behavioural differentiation, to assess population divergence across the OVC. We found that the evolutionary histories of both R. megacephalum and P. melanonota have been shaped by this environmental barrier. However, these species responded in different and asynchronous manners to the establishment of the OVC and to past connections between the currently isolated South American forests, which can be mostly explained by their distinct ecologies and dispersal abilities. Our results support the fact that the biological attributes of species can make their evolutionary histories idiosyncratic.


Assuntos
Evolução Biológica , Especiação Genética , Passeriformes/genética , Animais , Florestas , Genética Populacional , Filogenia , Filogeografia , América do Sul , Clima Tropical
5.
Ecol Evol ; 7(23): 10451-10466, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29238567

RESUMO

Understanding patterns of species diversity relies on accurate taxonomy which can only be achieved by long-term natural history research and the use of complementary information to establish species boundaries among cryptic taxa. We used DNA barcoding to characterize the ant diversity of Iguazú National Park (INP), a protected area of the Upper Paraná Atlantic Forest ecoregion, located at the southernmost extent of this forest. We assessed ant diversity using both cytochrome c oxidase subunit 1 (COI) sequences and traditional morphological approaches, and compared the results of these two methods. We successfully obtained COI sequences for 312 specimens belonging to 124 species, providing a DNA barcode reference library for nearly 50% of the currently known ant fauna of INP. Our results support a clear barcode gap for all but two species, with a mean intraspecific divergence of 0.72%, and an average congeneric distance of 17.25%. Congruently, the library assembled here was useful for the discrimination of the ants of INP and allowed us to link unidentified males and queens to their worker castes. To detect overlooked diversity, we classified the DNA barcodes into Molecular Operational Taxonomic Units (MOTUs) using three different clustering algorithms, and compared their number and composition to that of reference species identified based on morphology. The MOTU count was always higher than that of reference species regardless of the method, suggesting that the diversity of ants at INP could be between 6% and 10% higher than currently recognized. Lastly, our survey contributed with 78 new barcode clusters to the global DNA barcode reference library, and added 36 new records of ant species for the INP, being 23 of them new citations for Argentina.

6.
PLoS One ; 12(10): e0186845, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29049373

RESUMO

Because the tropical regions of America harbor the highest concentration of butterfly species, its fauna has attracted considerable attention. Much less is known about the butterflies of southern South America, particularly Argentina, where over 1,200 species occur. To advance understanding of this fauna, we assembled a DNA barcode reference library for 417 butterfly species of Argentina, focusing on the Atlantic Forest, a biodiversity hotspot. We tested the efficacy of this library for specimen identification, used it to assess the frequency of cryptic species, and examined geographic patterns of genetic variation, making this study the first large-scale genetic assessment of the butterflies of southern South America. The average sequence divergence to the nearest neighbor (i.e. minimum interspecific distance) was 6.91%, ten times larger than the mean distance to the furthest conspecific (0.69%), with a clear barcode gap present in all but four of the species represented by two or more specimens. As a consequence, the DNA barcode library was extremely effective in the discrimination of these species, allowing a correct identification in more than 95% of the cases. Singletons (i.e. species represented by a single sequence) were also distinguishable in the gene trees since they all had unique DNA barcodes, divergent from those of the closest non-conspecific. The clustering algorithms implemented recognized from 416 to 444 barcode clusters, suggesting that the actual diversity of butterflies in Argentina is 3%-9% higher than currently recognized. Furthermore, our survey added three new records of butterflies for the country (Eurema agave, Mithras hannelore, Melanis hillapana). In summary, this study not only supported the utility of DNA barcoding for the identification of the butterfly species of Argentina, but also highlighted several cases of both deep intraspecific and shallow interspecific divergence that should be studied in more detail.


Assuntos
Borboletas/genética , Código de Barras de DNA Taxonômico , Animais , Borboletas/classificação , Variação Genética , Filogeografia , Especificidade da Espécie
7.
Mol Phylogenet Evol ; 89: 182-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25929787

RESUMO

We explored the phylogeographic patterns of intraspecific diversity in the Red-crowned Ant Tanager (Habia rubica) throughout its continent-wide distribution, in order to understand its evolutionary history and the role of evolutionary drivers that are considered to promote avian diversification in the Neotropics. We sampled 100 individuals of H. rubica from Mexico to Argentina covering the main areas of its disjunct distribution. We inferred phylogenetic relationships through Bayesian and maximum parsimony methodologies based on mitochondrial and nuclear markers, and complemented genetic analyses with the assessment of coloration and behavioral differentiation. We found four deeply divergent phylogroups within H. rubica: two South American lineages and two Mexican and Middle American lineages. The divergence event between the northern and southern phylogroups was dated to c. 5.0 Ma, seemingly related to the final uplift of the Northern Andes. Subsequently, the two South American phylogroups split c. 3.5 Ma possibly due to the development of the open vegetation corridor that currently isolates the Amazonian and Atlantic forests. Diversification throughout Mexico and Middle America, following dispersion across the Isthmus of Panama, was presumably more recent and coincident with Pleistocene climatic fluctuations and habitat fragmentations. The analyses of vocalizations and plumage coloration showed significant differences among main lineages that were consistent with the phylogenetic evidence. Our findings suggest that the evolutionary history of H. rubica has been shaped by an assortment of diversification drivers at different temporal and spatial scales resulting in deeply divergent lineages that we recommend should be treated as different species.


Assuntos
Biodiversidade , Evolução Biológica , Variação Genética/genética , Passeriformes/genética , Passeriformes/fisiologia , Filogenia , Animais , Formigas , Teorema de Bayes , América Central , Plumas , Feminino , Especiação Genética , Masculino , Passeriformes/anatomia & histologia , Passeriformes/classificação , Filogeografia , Pigmentação , América do Sul , Especificidade da Espécie , Vocalização Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...