Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 12(11): e9473, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36381393

RESUMO

Plants alter soil biological communities, generating ecosystem legacies that affect the performance of successive plants, influencing plant community assembly and successional trajectories. Yet, our understanding of how microbe-mediated soil legacies influence plant establishment is limited for primary successional systems and forest ecosystems, particularly for ectomycorrhizal plants. In a two-phase greenhouse experiment using primary successional mine reclamation materials with or without forest soil additions, we conditioned soil with an early successional shrub with low mycorrhizal dependence (willow, Salix scouleriana) and a later-successional ectomycorrhizal conifer (spruce, Picea engelmannii × glauca). The same plant species and later-successional plants (spruce and/or redcedar, Thuja plicata, a mid- to late-successional arbuscular mycorrhizal conifer) were grown as legacy-phase seedlings in conditioned soils and unconditioned control soils. Legacy effects were evaluated based on seedling survival and biomass, and the abundance and diversity of root fungal symbionts and pathogens. We found negative intraspecific (same-species) soil legacies for willow associated with pathogen accumulation, but neutral to positive intraspecific legacies in spruce associated with increased mycorrhizal fungal colonization and diversity. Our findings support research showing that soil legacy effects vary with plant nutrient acquisition strategy, with plants with low mycorrhizal dependence experiencing negative feedbacks and ectomycorrhizal plants experiencing positive feedbacks. Soil legacy effects of willow on next-stage successional species (spruce and redcedar) were negative, potentially due to allelopathy, while ectomycorrhizal spruce had neutral to negative legacy effects on arbuscular mycorrhizal redcedar, likely due to the trees not associating with compatible mycorrhizae. Thus, positive biological legacies may be limited to scenarios where mycorrhizal-dependent plants grow in soil containing legacies of compatible mycorrhizae. We found that soil legacies influenced plant performance in mine reclamation materials with and without forest soil additions, indicating that initial restoration actions may potentially exert long-term effects on plant community composition, even in primary successional soils with low microbial activity.

2.
Artigo em Inglês | MEDLINE | ID: mdl-24521406

RESUMO

Serpentine, and other asbestos minerals, are considered potential hazards to human respiratory health. It has been postulated that the surface characteristics of these substances, such as surface charge and adsorbed metals, notably Fe and other transition metals, may be the major agents responsible for their toxicity. There is a general consensus that the amphibole group of minerals possesses a greater health risk than serpentines dominated by chrysotile. There have been suggestions that natural processes can alter the surfaces of these minerals and reduce their potency. This study examined the effects of carbonic acid, oxalic acid and hydrochloric acid on the surface characteristics of two trioctahedral minerals, actinolite (amphibole) and chrysotile (serpentine), and compared the results to a non-asbestiform, dioctahedral mineral, kaolinite. Results confirm that the treatments alter the mineral surfaces by changing the zeta potential of the asbestiform minerals from positive to negative and by removing considerable amounts on non-crystalline Fe and other metals. X-ray analyses indicated that mineral structure was little affected by the treatments, and TOF-SIMS revealed that treatments did remove surface adsorbed metals and cations in octahedral coordination within the samples.


Assuntos
Amiantos Anfibólicos/química , Asbestos Serpentinas/química , Ácido Carbônico/farmacologia , Ácido Clorídrico/farmacologia , Ácido Oxálico/farmacologia , Propriedades de Superfície/efeitos dos fármacos , Humanos , Caulim/química , Espectrometria de Massas , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...