Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(23): 13105-13116, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32457152

RESUMO

With over 30% of current medications targeting this family of proteins, G-protein-coupled receptors (GPCRs) remain invaluable therapeutic targets. However, due to their unique physicochemical properties, their low abundance, and the lack of highly specific antibodies, GPCRs are still challenging to study in vivo. To overcome these limitations, we combined here transgenic mouse models and proteomic analyses in order to resolve the interactome of the δ-opioid receptor (DOPr) in its native in vivo environment. Given its analgesic properties and milder undesired effects than most clinically prescribed opioids, DOPr is a promising alternative therapeutic target for chronic pain management. However, the molecular and cellular mechanisms regulating its signaling and trafficking remain poorly characterized. We thus performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses on brain homogenates of our newly generated knockin mouse expressing a FLAG-tagged version of DOPr and revealed several endogenous DOPr interactors involved in protein folding, trafficking, and signal transduction. The interactions with a few identified partners such as VPS41, ARF6, Rabaptin-5, and Rab10 were validated. We report an approach to characterize in vivo interacting proteins of GPCRs, the largest family of membrane receptors with crucial implications in virtually all physiological systems.


Assuntos
Encéfalo/metabolismo , Mapas de Interação de Proteínas/fisiologia , Receptores Opioides delta/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Técnicas de Introdução de Genes , Genes Reporter/genética , Masculino , Camundongos , Camundongos Transgênicos , Dobramento de Proteína , Mapeamento de Interação de Proteínas/métodos , Proteômica , Receptores Opioides delta/genética , Transdução de Sinais/fisiologia , Espectrometria de Massas em Tandem
2.
Methods Mol Biol ; 1947: 289-302, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30969423

RESUMO

G protein-coupled receptors (GPCRs) contain highly hydrophobic domains that are subject to aggregation when exposed to the crowded environment of the cytoplasm. Many events can lead to protein aggregation such as mutations, endoplasmic reticulum (ER) stress, and misfolding. These processes have been widely known to impact GPCR folding, maturation, and localization. Protein aggregates are transported toward the microtubule-organizing center via dynein to form a large juxta-nuclear structure called the aggresome, and in due course, are then targeted for degradation. Here, we describe a method to study aggregation of GPCRs by fluorescence microscopy.


Assuntos
Microscopia de Fluorescência/métodos , Multimerização Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Dobramento de Proteína
3.
Sci Rep ; 8(1): 7321, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743652

RESUMO

Genetically-modified animal models have significantly increased our understanding of the complex central nervous system circuits. Among these models, inducible transgenic mice whose specific gene expression can be modulated through a Cre recombinase/LoxP system are useful to study the role of specific peptides and proteins in a given population of cells. In the present study, we describe an efficient approach to selectively deliver a Cre-GFP to dorsal root ganglia (DRG) neurons. First, mice of different ages were injected in both hindpaws with a recombinant adeno-associated virus (rAAV2/9-CBA-Cre-GFP). Using this route of injection in mice at 5 days of age, we report that approximately 20% of all DRG neurons express GFP, 6 to 8 weeks after the infection. The level of infection was reduced by 50% when the virus was administered at 2 weeks of age. Additionally, the virus-mediated delivery of the Cre-GFP was also investigated via the intrathecal route. When injected intrathecally, the rAAV2/9-CBA-Cre-GFP virus infected a much higher proportion of DRG neurons than the intraplantar injection, with up to 51.6% of infected lumbar DRG neurons. Noteworthy, both routes of injection predominantly transduced DRG neurons over spinal and brain neurons.


Assuntos
Dependovirus/fisiologia , Gânglios Espinais/citologia , Integrases/metabolismo , Transdução Genética/métodos , Animais , DNA Recombinante/genética , Dependovirus/genética , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Camundongos , Neurônios/metabolismo
5.
Cell Death Discov ; 3: 16100, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28179995

RESUMO

The unfolding of apoptosis involves the cleavage of hundreds of proteins by the caspase family of cysteinyl peptidases. Among those substrates are proteins involved in intracellular vesicle trafficking with a net outcome of shutting down the crucial processes governing protein transport to organelles and to the plasma membrane. However, because of the intertwining of receptor trafficking and signaling, cleavage of specific proteins may lead to unintended consequences. Here we show that in apoptosis, sorting nexin 1 and 2 (SNX1 and SNX2), two proteins involved in endosomal sorting, are cleaved by initiator caspases and also by executioner caspase-6 in the case of SNX2. Moreover, SNX1 is cleaved at multiple sites, including following glutamate residues. Cleavage of SNX2 results in a loss of association with the endosome-to-trans-Golgi network transport protein Vps35 and in a delocalization from endosomes of its associated partner Vps26. We also demonstrate that SNX2 depletion causes an increase in hepatocyte growth factor receptor tyrosine phosphorylation and Erk1/2 signaling in cells. Finally, we show that SNX2 mRNA and protein levels are decreased in colorectal carcinoma and that lower SNX2 gene expression correlates with an increase in cancer patient mortality. Our study reveals the importance to characterize the cleavage fragments produced by caspases of specific death substrates given their potential implication in the mechanism of regulation of physiological (signaling/trafficking) pathways or in the dysfunction leading to pathogenesis.

6.
Bioconjug Chem ; 26(3): 405-11, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25654426

RESUMO

Arginine-rich cell penetrating peptides are short cationic peptides able to cross biological membranes despite their peptidic character. In order to optimize their penetration properties and further elucidate their mechanisms of cellular entry, these peptides have been intensively studied for the last two decades. Although several parameters are simultaneously involved in the internalization mechanism, recent studies suggest that structural modifications influence cellular internalization. Particularly, backbone rigidification, including macrocyclization, was found to enhance proteolytic stability and cellular uptake. In the present work, we describe the synthesis of macrocyclic arginine-rich cell penetrating peptides and study their cellular uptake properties using a combination of flow cytometry and confocal microscopy. By varying ring size, site of cyclization, and stereochemistry of the arginine residues, we studied their structure-uptake relationship and showed that the mode and site of cyclization as well as the stereochemistry influence cellular uptake. This study led to the identification of a hepta-arginine macrocycle as efficient as its linear nona-arginine congener to enter cells.


Assuntos
Membrana Celular/metabolismo , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Células HeLa , Humanos , Relação Estrutura-Atividade
7.
PLoS One ; 7(2): e32172, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22384171

RESUMO

The inhibition of the functions of c-Myc (endogenous and oncogenic) was recently shown to provide a spectacular therapeutic index in cancer mouse models, with complete tumor regression and minimal side-effects in normal tissues. This was achieved by the systemic and conditional expression of omomyc, the cDNA of a designed mutant of the b-HLH-LZ of c-Myc named Omomyc. The overall mode of action of Omomyc consists in the sequestration of Max and the concomitant competition of the Omomyc/Max complex with the endogenous c-Myc/Max heterodimer. This leads to the inhibition of the transactivation of Myc target genes involved in proliferation and metabolism. While this body of work has provided extraordinary insights to guide the future development of new cancer therapies that target c-Myc, Omomyc itself is not a therapeutic agent. In this context, we sought to exploit the use of a b-HLH-LZ to inhibit c-Myc in a cancer cell line in a more direct fashion. We demonstrate that the b-HLH-LZ domain of Max (Max*) behaves as a bona fide protein transduction domain (PTD) that can efficiently transduce across cellular membrane via through endocytosis and translocate to the nucleus. In addition, we show that the treatment of HeLa cells with Max* leads to a reduction of metabolism and proliferation rate. Accordingly, we observe a decrease of the population of HeLa cells in S phase, an accumulation in G1/G0 and the induction of apoptosis. In agreement with these phenotypic changes, we show by q-RT-PCR that the treatment of HeLa cells with Max* leads to the activation of the transcription c-Myc repressed genes as well as the repression of the expression of c-Myc activated genes. In addition to the novel discovery that the Max b-HLH-LZ is a PTD, our findings open up new avenues and strategies for the direct inhibition of c-Myc with b-HLH-LZ analogs.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Regulação da Expressão Gênica , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Apoptose , Fatores de Transcrição de Zíper de Leucina Básica/química , Ciclo Celular , Proliferação de Células , DNA Complementar/metabolismo , Dimerização , Endocitose , Células HeLa , Humanos , Microscopia Confocal/métodos , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Fatores de Transcrição/metabolismo , Transferrina/química
8.
J Biol Chem ; 286(33): 29035-29043, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21724843

RESUMO

The type II transmembrane serine protease TMPRSS6 (also known as matriptase-2) controls iron homeostasis through its negative regulation of expression of hepcidin, a key hormone involved in iron metabolism. Upstream of the hepcidin-regulated signaling pathway, TMPRSS6 cleaves its target substrate hemojuvelin (HJV) at the plasma membrane, but the dynamics of the cell-surface expression of the protease have not been addressed. Here, we report that TMPRSS6 undergoes constitutive internalization in transfected HEK293 cells and in two human hepatic cell lines, HepG2 and primary hepatocytes, both of which express TMPRSS6 endogenously. Cell surface-labeled TMPRSS6 was internalized and was detected in clathrin- and AP-2-positive vesicles via a dynamin-dependent pathway. The endocytosed TMPRSS6 next transited in early endosomes and then to lysosomes. Internalization of TMPRSS6 is dependent on specific residues within its N-terminal cytoplasmic domain, as site-directed mutagenesis of these residues abrogated internalization and maintained the enzyme at the cell surface. Cells coexpressing these mutants and HJV produced significantly decreased levels of hepcidin compared with wild-type TMPRSS6 due to the sustained cleavage of HJV at the cell surface by TMPRSS6 mutants. Our results underscore for the first time the importance of TMPRSS6 trafficking at the plasma membrane in the regulation of hepcidin expression, an event that is essential for iron homeostasis.


Assuntos
Membrana Celular/enzimologia , Endocitose/fisiologia , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/genética , Membrana Celular/genética , Vesículas Revestidas por Clatrina/enzimologia , Vesículas Revestidas por Clatrina/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Proteína da Hemocromatose , Células Hep G2 , Hepcidinas , Homeostase/fisiologia , Humanos , Ferro/metabolismo , Proteínas de Membrana/genética , Transporte Proteico/fisiologia , Serina Endopeptidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...