Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(8): 083401, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35275683

RESUMO

We propose and demonstrate the appearance of an effective attractive three-body interaction in coherently driven two-component Bose-Einstein condensates. It originates from the spinor degree of freedom that is affected by a two-body mean-field shift of the driven transition frequency. Importantly, its strength can be controlled with the Rabi-coupling strength and it does not come with additional losses. In the experiment, the three-body interactions are adjusted to play a predominant role in the equation of state of a cigar-shaped trapped condensate. This is confirmed through two striking observations: a downshift of the radial breathing mode frequency and the radial collapses for positive values of the dressed-state scattering length.

2.
Phys Rev Lett ; 127(20): 203402, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860048

RESUMO

We theoretically calculate and experimentally measure the beyond-mean-field (BMF) equation of state in a coherently coupled two-component Bose-Einstein condensate (BEC) in the regime where averaging of the interspecies and intraspecies coupling constants over the hyperfine composition of the single-particle dressed state predicts the exact cancellation of the two-body interaction. We show that with increasing the Rabi-coupling frequency Ω, the BMF energy density crosses over from the nonanalytic Lee-Huang-Yang scaling ∝n^{5/2} to an expansion in integer powers of density, where, in addition to a two-body BMF term ∝n^{2}sqrt[Ω], there emerges a repulsive three-body contribution ∝n^{3}/sqrt[Ω]. We experimentally evidence these two contributions, thanks to their different scaling with Ω, in the expansion of a Rabi-coupled two-component ^{39}K condensate in a waveguide. By studying the expansion with and without Rabi coupling, we reveal an important feature relevant for observing BMF effects and associated phenomena in mixtures with spin-asymmetric losses: Rabi coupling helps preserve the spin composition and thus prevents the system from drifting away from the point of the vanishing mean field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA