Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 5780, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852905

RESUMO

Quantum coherence plays an essential role in diverse natural phenomena and technological applications. The unavoidable coupling of the quantum system to an uncontrolled environment incurs dissipation that is often described using the secular approximation. Here we probe the limit of this approximation in the rotational relaxation of molecules due to thermal collisions by using the laser-kicked molecular rotor as a model system. Specifically, rotational coherences in N2O gas (diluted in He) are created by two successive nonresonant short and intense laser pulses and probed by studying the change of amplitude of the rotational alignment echo with the gas density. By interrogating the system at the early stage of its collisional relaxation, we observe a significant variation of the dissipative influence of collisions with the time of appearance of the echo, featuring a decoherence process that is well reproduced by the nonsecular quantum master equation for modeling molecular collisions.

2.
J Chem Phys ; 150(12): 124109, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30927888

RESUMO

We present a model for the lowest two potential energy surfaces (PESs) that describe the photoinduced ring-opening reaction of benzopyran taken as a model compound to study the photochromic ring-opening reaction of indolinobenzospiropyran and its evolution toward its open-chain analog. The PESs are expressed in terms of three effective rectilinear coordinates. One corresponds to the direction between the equilibrium geometry in the electronic ground state, referred to as the Franck-Condon geometry, and the minimum of conical intersection (CI), while the other two span the two-dimensional branching space at the CI. The model correctly reproduces the topography of the PESs. The ab initio calculations are performed with the extended multiconfiguration quasidegenerate perturbation theory at second order method. We demonstrate that accounting for electron dynamic correlation drastically changes the global energy landscape since some zwitterionic states become strongly stabilized. Quantum dynamics calculations using this PES model produce an absorption spectrum that matches the experimental one to a good accuracy.

3.
Opt Express ; 26(24): 31839-31849, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30650763

RESUMO

We report on the polarization analysis of shortpulse ultraviolet radiation produced by third-harmonic generation in a gas of coherently spinning molecules. A pulse of twisted linear polarization imprints a unidirectional rotational motion to the molecules leading to an orientation of their rotational angular momenta. A second pulse, time-delayed with respect to the first one, circularly polarized in the plane of rotation of the molecules, acts as a driving field for third-harmonic generation. The angular momentum and energy conservation applied to this process foresees the generation of two Doppler-shifted circularly-polarized harmonics of opposite handedness. Our analysis reveals that spinning molecules enable the generation of a well polarized third-harmonic radiation exhibiting a high degree of ellipticity. Tracking the orientation of the latter allows a time-capture of the molecular axis direction from which the average angular velocity of the rotating molecules is inferred. This method provides a user-friendly polarization-based tachometer for measurement of the rotational speed of spinning nonlinear rotors.

4.
Opt Lett ; 31(19): 2897-9, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16969415

RESUMO

We report an original optical method providing the probability of molecular ionization induced by femtosecond laser pulses. The approach consists of exploiting molecular alignment to extract reliable information about ionization. The cross defocusing technique implemented for this purpose reveals a sensitivity with respect to postpulse alignment, as well as to the free electron density induced by the ultrashort laser pulse. The analysis of the resulting signal thus gives access to absolute single-ionization probabilities calibrated through the degree of alignment, provided that free electrons are produced mainly by single ionization. The relevance of the method is assessed in N2.

5.
Opt Lett ; 30(1): 70-2, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15648641

RESUMO

The field-free alignment of CO2 produced in response to the excitation of a molecule by a high-intensity femtosecond pump pulse is measured with a simple coronography-like technique. The technique is based on the defocusing of a time-delayed probe pulse produced by the spatial distribution of aligned molecules. In the intensity regime explored here, the technique is shown to give valuable information about dynamic alignment. With the help of simulations, the degree of alignment is extracted from the data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...