Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36904536

RESUMO

The development of biofuel cells (BFCs) currently has high potential since these devices can be used as alternative energy sources. This work studies promising materials for biomaterial immobilization in bioelectrochemical devices based on a comparative analysis of the energy characteristics (generated potential, internal resistance, power) of biofuel cells. Bioanodes are formed by the immobilization of membrane-bound enzyme systems of Gluconobacter oxydans VKM V-1280 bacteria containing pyrroloquinolinquinone-dependent dehydrogenases into hydrogels of polymer-based composites with carbon nanotubes. Natural and synthetic polymers are used as matrices, and multi-walled carbon nanotubes oxidized in hydrogen peroxide vapor (MWCNTox) are used as fillers. The intensity ratio of two characteristic peaks associated with the presence of atoms C in the sp3 and sp2 hybridization for the pristine and oxidized materials is 0.933 and 0.766, respectively. This proves a reduced degree of MWCNTox defectiveness compared to the pristine nanotubes. MWCNTox in the bioanode composites significantly improve the energy characteristics of the BFCs. Chitosan hydrogel in composition with MWCNTox is the most promising material for biocatalyst immobilization for the development of bioelectrochemical systems. The maximum power density was 1.39 × 10-5 W/mm2, which is 2 times higher than the power of BFCs based on other polymer nanocomposites.

2.
Polymers (Basel) ; 15(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36679338

RESUMO

Biocatalysts based on the methylotrophic yeast Ogataea polymorpha VKM Y-2559 immobilized in polymer-based nanocomposites for the treatment of methanol-containing wastewater were developed. The organosilica composites with different matrix-to-filler ratios derived from TEOS/MTES in the presence of PEG (SPEG-composite) and from silicon-polyethylene glycol (STPEG-composite) differ in the structure of the silicate phase and its distribution in the composite matrix. Methods of fluorescent and scanning microscopy first confirmed the formation of an organosilica shell around living yeast cells during sol-gel bio-STPEG-composite synthesis. Biosensors based on the yeast cells immobilized in STPEG- and SPEG-composites are characterized by effective operation: the coefficient of sensitivity is 0.85 ± 0.07 mgO2 × min-1 × mmol-1 and 0.87 ± 0.05 mgO2 × min-1 × mmol-1, and the long-term stability is 10 and 15 days, respectively. The encapsulated microbial cells are protected from UV radiation and the toxic action of heavy metal ions. Biofilters based on the developed biocatalysts are characterized by high effectiveness in the utilization of methanol-rich wastewater-their oxidative power reached 900 gO2/(m3 × cycle), and their purification degree was up to 60%.

3.
Enzyme Microb Technol ; 150: 109879, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34489032

RESUMO

The impact of hydrophilic polymers in an organosilica matrix on the features and performance of immobilized methylotrophic yeast cells used as biocatalysts was investigated and described. Yeast cells were immobilized in a matrix made of tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) by one-step sol-gel route of synthesis in the presence of polyethylene glycol (PEG) or polyvinyl alcohol (PVA). Organosilica shells were spontaneously built around cells as a result of yeast immobilization at a TEOS to MTES ratio of 85/15 vol% and hydrophilic polymer (PEG or PVA). As a structure-directing agent, PVA produces organosilica films. Stable high-performance biocatalysts active for one year, if stored at -18 °C, have been obtained by entrapment of methylotrophic yeast cells. A trickling biofilter with and without active aeration was designed using entrapped yeast cells to treat methanol polluted wastewater. A biofilter model with active aeration could halve methanol input thus demonstrating better performance compared to treatment without active aeration.


Assuntos
Polímeros , Saccharomyces cerevisiae , Biocatálise , Interações Hidrofóbicas e Hidrofílicas , Álcool de Polivinil
4.
3 Biotech ; 11(7): 331, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34194914

RESUMO

We have studied immobilization of Paracoccus yeei VKM B-3302 cells in an organosilica sol-gel matrix consisting of tetraethoxysilane, methyltriethoxysilane and polyvinyl alcohol as a structure-modifying agent. Optical microscopy showed that higher amounts of methyltriethoxysilane make the solid material structure softer. In addition, formation of structures, probably, with bacterial cells inside was spotted. We have analyzed the catalytic power of the immobilized bacteria and discovered that the material's catalytic potential is the highest at 50% of methyltriethoxysilane. Therefore, this seems to be the best ratio of precursors in a material for bacteria to become effectively encapsulated. Analysis of the material structure by low-temperature nitrogen absorption and scanning electron microscopy revealed that in the given conditions the material got crack-like mesopores and spherical particles of about 25 µm in diameter with immobilized bacterial cells on their surface. The study found that the fabricated organosilica material can effectively protect bacterial cells against UV radiation, pH change, high salinity and high heavy metal ion concentration.

5.
Enzyme Microb Technol ; 92: 94-8, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27542749

RESUMO

This research suggests the use of new hybrid biomaterials based on methylotrophic yeast cells covered by an alkyl-modified silica shell as biocatalysts. The hybrid biomaterials are produced by sol-gel chemistry from silane precursors. The shell protects microbial cells from harmful effects of acidic environment. Potential use of the hybrid biomaterials based on methylotrophic yeast Ogataea polymorpha VKM Y-2559 encapsulated into alkyl-modified silica matrix for biofilters is represented for the first time. Organo-silica shells covering yeast cells effectively protect them from exposure to harmful factors, including extreme values of pH. The biofilter based on the organic silica matrix encapsulated in the methylotrophic yeast Ogataea polymorpha BKM Y-2559 has an oxidizing power of 3 times more than the capacity of the aeration tanks used at the chemical plants during methyl alcohol production. This may lead to the development of new and effective industrial wastewater treatment technologies.


Assuntos
Metanol/isolamento & purificação , Saccharomycetales/metabolismo , Águas Residuárias/química , Biocatálise , Biotecnologia , Células Imobilizadas/metabolismo , Células Imobilizadas/ultraestrutura , Filtração , Resíduos Industriais/análise , Consumo de Oxigênio , Saccharomycetales/ultraestrutura , Sílica Gel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...