Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; : e202400360, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118493

RESUMO

Two series of macrocyclic inhibitors addressing the S1 pocket and the prime site of the fibrinolytic serine protease plasmin have been developed. In the first series, a P1 tranexamoyl residue was coupled to 4-aminophenylalanine in P1' position, which provided moderately potent inhibitors with inhibition constants around 1 µM. In the second series, a substituted biphenylalanine was incorporated as P1' residue leading to approximately 1000-fold stronger plasmin inhibitors, the best compounds possess subnanomolar inhibition constants. The most effective compounds already exhibit a certain selectivity as plasmin inhibitors compared to other trypsin-like serine proteases such as trypsin, plasma kallikrein, thrombin, activated protein Ca, as well as factors XIa and Xa. For inhibitor 28 of the second series, the co-crystal structure in complex with a Ser195Ala microplasmin mutant revealed that the P2' residue adopts multiple conformations. Most polar contacts to plasmin and surrounding water molecules are mediated through the P1 tranexamoyl residue, whereas the bound conformation of the macrocycle is mainly stabilized by two intramolecular hydrogen bonds.

2.
Blood ; 143(7): 641-650, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37992228

RESUMO

ABSTRACT: Hereditary angioedema (HAE) is associated with episodic kinin-induced swelling of the skin and mucosal membranes. Most patients with HAE have low plasma C1-inhibitor activity, leading to increased generation of the protease plasma kallikrein (PKa) and excessive release of the nanopeptide bradykinin from high-molecular-weight kininogen (HK). However, disease-causing mutations in at least 10% of patients with HAE appear to involve genes for proteins other than C1-inhibitor. A point mutation in the Kng1 gene encoding HK and low-molecular weight kininogen (LK) was identified recently in a family with HAE. The mutation changes a methionine (Met379) to lysine (Lys379) in both proteins. Met379 is adjacent to the Lys380-Arg381 cleavage site at the N-terminus of the bradykinin peptide. Recombinant wild-type (Met379) and variant (Lys379) versions of HK and LK were expressed in HEK293 cells. PKa-catalyzed kinin release from HK and LK was not affected by the Lys379 substitutions. However, kinin release from HK-Lys379 and LK-Lys379 catalyzed by the fibrinolytic protease plasmin was substantially greater than from wild-type HK-Met379 and LK-Met379. Increased kinin release was evident when fibrinolysis was induced in plasma containing HK-Lys379 or LK-Lys379 compared with plasma containing wild-type HK or LK. Mass spectrometry revealed that the kinin released from wild-type and variant kininogens by PKa is bradykinin. Plasmin also released bradykinin from wild-type kininogens but cleaved HK-Lys379 and LK-Lys379 after Lys379 rather than Lys380, releasing the decapeptide Lys-bradykinin (kallidin). The Met379Lys substitutions make HK and LK better plasmin substrates, reinforcing the relationship between fibrinolysis and kinin generation.


Assuntos
Angioedemas Hereditários , Bradicinina , Humanos , Lisina , Angioedemas Hereditários/genética , Fibrinolisina , Metionina , Células HEK293 , Cininogênios , Calicreínas/genética , Racemetionina
3.
Mol Cell Proteomics ; 23(1): 100696, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101751

RESUMO

Plasminogen (Plg), the zymogen of plasmin (Plm), is a glycoprotein involved in fibrinolysis and a wide variety of other physiological processes. Plg dysregulation has been implicated in a range of diseases. Classically, human Plg is categorized into two types, supposedly having different functional features, based on the presence (type I) or absence (type II) of a single N-linked glycan. Using high-resolution native mass spectrometry, we uncovered that the proteoform profiles of human Plg (and Plm) are substantially more extensive than this simple binary classification. In samples derived from human plasma, we identified up to 14 distinct proteoforms of Plg, including a novel highly stoichiometric phosphorylation site at Ser339. To elucidate the potential functional effects of these post-translational modifications, we performed proteoform-resolved kinetic analyses of the Plg-to-Plm conversion using several canonical activators. This conversion is thought to involve at least two independent cleavage events: one to remove the N-terminal peptide and another to release the active catalytic site. Our analyses reveal that these processes are not independent but are instead tightly regulated and occur in a step-wise manner. Notably, N-terminal cleavage at the canonical site (Lys77) does not occur directly from intact Plg. Instead, an activation intermediate corresponding to cleavage at Arg68 is initially produced, which only then is further processed to the canonical Lys77 product. Based on our results, we propose a refined categorization for human Plg proteoforms. In addition, we reveal that the proteoform profile of human Plg is more extensive than that of rat Plg, which lacks, for instance, the here-described phosphorylation at Ser339.


Assuntos
Fibrinolisina , Plasminogênio , Humanos , Ratos , Animais , Fosforilação , Plasminogênio/metabolismo , Fibrinolisina/metabolismo , Fibrinólise , Processamento de Proteína Pós-Traducional
4.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762561

RESUMO

Plasminogen (Plg) is the inactive form of plasmin (Plm) that exists in two major glycoforms, referred to as glycoforms I and II (GI and GII). In the circulation, Plg assumes an activation-resistant "closed" conformation via interdomain interactions and is mediated by the lysine binding site (LBS) on the kringle (KR) domains. These inter-domain interactions can be readily disrupted when Plg binds to lysine/arginine residues on protein targets or free L-lysine and analogues. This causes Plg to convert into an "open" form, which is crucial for activation by host activators. In this study, we investigated how various ligands affect the kinetics of Plg conformational change using small-angle X-ray scattering (SAXS). We began by examining the open and closed conformations of Plg using size-exclusion chromatography (SEC) coupled with SAXS. Next, we developed a high-throughput (HTP) 96-well SAXS assay to study the conformational change of Plg. This method enables us to determine the Kopen value, which is used to directly compare the effect of different ligands on Plg conformation. Based on our analysis using Plg GII, we have found that the Kopen of ε-aminocaproic acid (EACA) is approximately three times greater than that of tranexamic acid (TXA), which is widely recognized as a highly effective ligand. We demonstrated further that Plg undergoes a conformational change when it binds to the C-terminal peptides of the inhibitor α2-antiplasmin (α2AP) and receptor Plg-RKT. Our findings suggest that in addition to the C-terminal lysine, internal lysine(s) are also necessary for the formation of open Plg. Finally, we compared the conformational changes of Plg GI and GII directly and found that the closed form of GI, which has an N-linked glycosylation, is less stable. To summarize, we have successfully determined the response of Plg to various ligand/receptor peptides by directly measuring the kinetics of its conformational changes.


Assuntos
Lisina , Plasminogênio , Ligantes , Espalhamento a Baixo Ângulo , Raios X , Difração de Raios X , Serina Proteases , Anticorpos
5.
Eur J Med Chem ; 261: 115786, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37716187

RESUMO

Perforin is a pore-forming protein whose normal function enables cytotoxic T and natural killer (NK) cells to kill virus-infected and transformed cells. Conversely, unwanted perforin activity can also result in auto-immune attack, graft rejection and aberrant responses to pathogens. Perforin is critical for the function of the granule exocytosis cell death pathway and is therefore a target for drug development. In this study, by screening a fragment library using NMR and surface plasmon resonance, we identified 4,4-diaminodiphenyl sulfone (dapsone) as a perforin ligand. We also found that dapsone has modest (mM) inhibitory activity of perforin lytic activity in a red blood cell lysis assay in vitro. Sequential modification of this lead fragment, guided by structural knowledge of the ligand binding site and binding pose, and supported by SPR and ligand-detected 19F NMR, enabled the design of nanomolar inhibitors of the cytolytic activity of intact NK cells against various tumour cell targets. Interestingly, the ligands we developed were largely inert with respect to direct perforin-mediated red blood cell lysis but were very potent in the context of perforin's action on delivering granzymes in the immune synapse, the context in which it functions physiologically. Our work indicates that a fragment-based, structure-guided drug discovery strategy can be used to identify novel ligands that bind perforin. Moreover, these molecules have superior physicochemical properties and solubility compared to previous generations of perforin ligands.


Assuntos
Dapsona , Células Matadoras Naturais , Perforina/metabolismo , Ligantes , Células Matadoras Naturais/metabolismo , Morte Celular , Dapsona/metabolismo
6.
ACS Chem Biol ; 18(8): 1863-1871, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37440171

RESUMO

"Reagentless" immunosensors are emerging to address the challenge of practical and sensitive detection of important biomarkers in real biological samples without the need for multistep assays and user intervention, with applications ranging from research tools to point-of-care diagnostics. Selective target binding to an affinity reagent is detected and reported in one step without the need for washing or additional reporters. In this study, we used a structure-guided approach to identify a mutation site in an antibody fragment for the polarity-dependent fluorophore, Anap, such that upon binding of the protein target cardiac troponin I, the Anap-labeled antibody would produce a detectable and dose-dependent shift in emission wavelength. We observed a significant emission wavelength shift of the Anap-labeled anti-cTnI mutant, with a blue shift of up to 37 nm, upon binding to the cTnI protein. Key differences in the resulting emission spectra between target peptides in comparison to whole proteins were also found; however, the affinity and binding characteristics remained unaffected when compared to the wild-type antibody. We also highlighted the potential flexibility of the approach by incorporating a near-infrared dye, IRDye800CW, into the same mutation site, which also resulted in a dose-dependent wavelength shift upon target incubation. These reagents can be used in experiments and devices to create simpler and more efficient biosensors across a range of research, medical laboratory, and point-of-care platforms.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Imunoensaio , Anticorpos/química , Peptídeos , Fragmentos de Imunoglobulinas , Troponina I/genética
8.
ChemMedChem ; 18(6): e202200632, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36710259

RESUMO

Two series of macrocyclic plasmin inhibitors with a C-terminal benzylamine group were synthesized. The substitution of the N-terminal phenylsulfonyl group of a previously described inhibitor provided two analogues with sub-nanomolar inhibition constants. Both compounds possess a high selectivity against all other tested trypsin-like serine proteases. Furthermore, a new approach was used to selectively introduce asymmetric linker segments. Two of these compounds inhibit plasmin with Ki values close to 2 nM. For the first time, four crystal structures of these macrocyclic inhibitors could be determined in complex with a Ser195Ala microplasmin mutant. The macrocyclic core segment of the inhibitors binds to the open active site of plasmin without any steric hindrance. This binding mode is incompatible with other trypsin-like serine proteases containing a sterically demanding 99-hairpin loop. The crystal structures obtained experimentally explain the excellent selectivity of this inhibitor type as previously hypothesized.


Assuntos
Antifibrinolíticos , Fibrinolisina , Fibrinolisina/química , Fibrinolisina/metabolismo , Antifibrinolíticos/química , Antifibrinolíticos/farmacologia , Tripsina/química , Ligação Proteica , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/química
9.
J Biol Chem ; 298(10): 102382, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35973511

RESUMO

Class A tick evasins are natural chemokine-binding proteins that block the signaling of multiple chemokines from the CC subfamily through their cognate receptors, thus suppressing leukocyte recruitment and inflammation. Development of tick evasins as chemokine-targeted anti-inflammatory therapeutics requires an understanding of the factors controlling their chemokine recognition and selectivity. To investigate the role of the evasin N-terminal region for chemokine recognition, we prepared chimeric evasins by interchanging the N-terminal regions of four class A evasins, including a newly identified evasin, EVA-RPU02. We show through chemokine binding analysis of the parental and chimeric evasins that the N-terminal region is critical for chemokine binding affinity and selectivity. Notably, we found some chimeras were unable to bind certain cognate chemokine ligands of both parental evasins. Moreover, unlike any natural evasins characterized to date, some chimeras exhibited specific binding to a single chemokine. These results indicate that the evasin N terminus interacts cooperatively with the "body" of the evasin to enable optimum chemokine recognition. Furthermore, the altered chemokine selectivity of the chimeras validates the approach of engineering the N termini of evasins to yield unique chemokine recognition profiles.


Assuntos
Proteínas de Artrópodes , Quimiocinas , Receptores CXCR , Rhipicephalus , Proteínas e Peptídeos Salivares , Animais , Proteínas de Artrópodes/metabolismo , Quimiocinas/metabolismo , Ligação Proteica , Receptores CXCR/metabolismo , Rhipicephalus/metabolismo , Transdução de Sinais , Proteínas e Peptídeos Salivares/metabolismo
10.
Blood Adv ; 6(10): 3142-3154, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35086137

RESUMO

Factor XII (FXII) is the zymogen of a plasma protease (FXIIa) that contributes to bradykinin generation by converting prekallikrein to the protease plasma kallikrein (PKa). FXII conversion to FXIIa by autocatalysis or PKa-mediated cleavage is enhanced when the protein binds to negatively charged surfaces such as polymeric orthophosphate. FXII is composed of noncatalytic (heavy chain) and catalytic (light chain) regions. The heavy chain promotes FXII surface-binding and surface-dependent activation but restricts activation when FXII is not surface bound. From the N terminus, the heavy chain contains fibronectin type 2 (FN2), epidermal growth factor-1 (EGF1), fibronectin type 1 (FN1), EGF2, and kringle (KNG) domains and a proline-rich region. It shares this organization with its homolog, pro-hepatocyte growth factor activator (Pro-HGFA). To study the importance of heavy chain domains in FXII function, we prepared FXII with replacements of each domain with corresponding Pro-HGFA domains and tested them in activation and activity assays. EGF1 is required for surface-dependent FXII autoactivation and surface-dependent prekallikrein activation by FXIIa. KNG and FN2 are important for limiting FXII activation in the absence of a surface by a process that may require interactions between a lysine/arginine binding site on KNG and basic residues elsewhere on FXII. This interaction is disrupted by the lysine analog ε-aminocaproic acid. A model is proposed in which an ε-aminocaproic acid-sensitive interaction between the KNG and FN2 domains maintains FXII in a conformation that restricts activation. Upon binding to a surface through EGF1, the KNG/FN2-dependent mechanism is inactivated, exposing the FXII activation cleavage site.


Assuntos
Fator XII , Pré-Calicreína , Ácido Aminocaproico , Coagulação Sanguínea , Fator XII/química , Fibronectinas/química , Lisina , Pré-Calicreína/química , Pré-Calicreína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA