Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Toxicol ; 24(3): 240-257, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38315346

RESUMO

High dose of fluoride intake is associated with toxic effects on kidney and cardiac tissues. This study evaluated the potential protective effect of fermented rooibos tea (RTE) on sodium fluoride (NaF)-induced cardiorenal toxicity in rats. Male Wistar rats (n = 56) were randomly allocated into one of seven equal groups: control, NaF (100 mg/kg orally), NaF + RTE (2%, w/v), NaF + RTE (4%, w/v), NaF + lisinopril (10 mg/kg orally), 2% RTE, and 4% RTE. The experiment lasted for 14 days and RTE was administered to the rats as their sole source of drinking fluid. NaF induced cardiorenal toxicity indicated by elevated level of urea, creatinine, LDH, creatinine kinase-MB, and cardiac troponin I in the serum, accompanied by altered histopathology of the kidney and heart. Furthermore, levels of H2O2, malondialdehyde, and NO were elevated, while GSH level was depleted in the kidney and heart due to NaF intoxication. Protein levels of c-reactive protein, TNFα, IL-1B, and NF-κB were increased by NaF in the serum, kidney, and heart. RTE at 2% and 4% (w/v) reversed cardiorenal toxicity, resolved histopathological impairment, attenuated oxidative stress and inhibited formation of pro-inflammatory markers. RTE at both concentrations down-regulates the mRNA expression of NF-κB, and upregulates the mRNA expression of both IκB and IκKB, thus blocking the activation of NF-κB signaling pathway. Taken together, these results clearly suggest that the protective potential of rooibos tea against NaF-induced cardiorenal toxicity, oxidative stress, and inflammation may be associated with the modulation of the NF-κB signaling pathway.


Assuntos
Aspalathus , Fluoreto de Sódio , Ratos , Masculino , Animais , Ratos Wistar , NF-kappa B/metabolismo , Aspalathus/metabolismo , Creatinina/farmacologia , Peróxido de Hidrogênio , Estresse Oxidativo , Transdução de Sinais , Inflamação/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia , Chá
2.
Appl Biochem Biotechnol ; 195(10): 5855-5880, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36708492

RESUMO

Studies have shown that exposure to air pollutants such as diesel exhaust particles (DEP) exacerbate diabetes complications. Morin hydrate (MH), a plant bioflavonoid, provides hepatoprotection due to its diverse pharmacological properties. This study examines the hepatoprotective effects of MH in Wistar rats with type 2 diabetes exposed to diesel exhaust (DE). Procured male Wistar rats (n = 60) were separated into 12 groups of five rat each. Type 2 diabetes was induced following oral therapy with fructose solution and one-time injection of 45 mg/kg of streptozotocin (STZ). The DEP extract was administered by nasal instillation, whereas MH was administered via oral gavage. Biochemical assays were used to determine the effect of MH on diabetic rats and DEP-exposed diabetic rats with respect to liver function indices (AST and ALT), liver antioxidants (SOD, CAT, Gpx, and GSH), lipid profile, and oxidative stress marker (conjugated diene and lipid peroxidation). The mRNA expression of PI3K/AKT/GLUT4 and AMPK/GLUT4 signaling pathways were quantified using RT-PCR. The results show that normal rats, diabetic rats, and diabetic rats exposed to DEP exhibited a substantial decrease in oxidative stress indicators, serum lipid profile, and levels of AST and ALP, as well as an increase in liver natural antioxidants following oral administration of MH. The gene expression study demonstrated that MH promotes the activation of the insulin signaling pathways which facilitates the uptake of glucose from the blood. This study suggests that MH offered hepatoprotection in type 2 diabetic rats and DEP exposed diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Animais , Antioxidantes/metabolismo , Ratos Wistar , Emissões de Veículos/toxicidade , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Estresse Oxidativo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Lipídeos/farmacologia
3.
Chem Biol Interact ; 367: 110196, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174737

RESUMO

This study seeks to determine the influence of diphenyl diselenide (DPDSe) on redox status, inflammatory and redox-sensitive genes in diesel exhaust particle (DEP)-induced neurotoxicity in male albino rats. Male Wistar albino rats were administered nasally with DEP (30 and 60 µg/kg) and treated with intraperitoneal administration of 10 mg/kg DPDSe. Non-enzymatic (lipid peroxidation and conjugated diene concentrations) and enzymatic (catalase, superoxide dismutase, glutathione peroxidase) antioxidant indices and activity of acetylcholinesterase enzyme were evaluated in brain tissues of the rats. Furthermore, the expression of genes linked to oxidative stress (HO-1, Nrf2), pro-inflammatory (NF-KB, IL-8, TNF-α) anti-inflammatory (IL-10) and brain-specific (GFAP, ENO-2) genes were also determined. The results indicated that DPDSe caused a notable reduction in the high levels of thiobarbituric acid reactive substances and conjugated diene observed in the brain of DEP-administered rats. DPDSe also reversed the observed reduction in catalase, superoxide dismutase and glutathione peroxidase enzyme activities in the brain of DEP-administered rats. Lastly, the downregulation of genes associated with redox homeostasis, anti-inflammatory and brain-specific genes and upregulation of pro-inflammatory genes observed in the DEP-treated groups were ameliorated by DPDSe. The immediate restoration of altered biochemical conditions and molecular expression in the brain of DEP-treated rats by DPDSe further validates its use as a promising therapeutic candidate for restoring neurotoxicity linked with DEP-induced oxidative stress.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Derivados de Benzeno , Catalase/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Interleucina-10/metabolismo , Interleucina-8/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Compostos Organosselênicos , Oxirredução , Estresse Oxidativo , Ratos , Ratos Wistar , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Emissões de Veículos/toxicidade
4.
Inflammopharmacology ; 30(6): 2447-2476, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35665872

RESUMO

This study investigated the modulatory effects of alkaloid extracts of Cannabis sativa (CSAE), Datura stramonium (DSAE), Nicotiana tabacum (NTAE) and male Carica papaya (CMAE) on neurotransmitter, neurotrophic and neuro-inflammatory systems linked to anxiety and depression. Male Wistar rats were orally administered the alkaloid extracts in doses of 5, 50, 500, and 2000 mg/kg for 90 days. On day 91, neurobehavioural studies were evaluated, rats were sacrificed, brain hippocampus removed and tissue homogenate prepared. Biochemical, cytokine and neurotransmitter metabolisms were estimated in the hippocampus. Expressions of genes linked to anxiety and depression were evaluated by RT-qPCR. Results showed CSAE, NTAE and CMAE act as anxiolytic and antidepressant agents by depleting TNF-α, IL-1ß and reactive oxygen species concentrations, and monoamine oxidase, angiotensin 1-converting enzyme and acetylcholinesterase activities while elevating IL-10 and dopamine concentrations and glutamate dehydrogenase activity at doses of 5, 50 and 500. Same doses of CSAE, NTAE and CMAE also depleted the gene expressions of GSK3ß, JNK, NF-ĸB, and Nesfatin-1 while increasing expressions of CREB, BDNF, serotonin and Nrf2. However, administration of DSAE and 2000 mg/kg CSAE, NTAE and CMAE had adverse modulatory effects on the neurochemical concentrations and activities as well as the gene expressions of the evaluated neurotransmitter, neurotrophic and inflammatory systems. In conclusion, the study established the sub-chronic instrumentalization potential of CSAE, CMAE, and NTAE for anxiolytic and anti-depressive moods, though their use may be associated with dependence and addiction, which may result in more detrimental effects than any therapeutic potential they may proffer.


Assuntos
Alcaloides , Ansiolíticos , Extratos Vegetais , Animais , Masculino , Ratos , Acetilcolinesterase , Alcaloides/farmacologia , Ansiolíticos/farmacologia , Ansiedade/tratamento farmacológico , Cannabis/química , Carica/química , Datura stramonium/química , Depressão/tratamento farmacológico , Depressão/metabolismo , Neurotransmissores , Extratos Vegetais/farmacologia , Ratos Wistar , Nicotiana/química
5.
J Diabetes Metab Disord ; 21(1): 805-816, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35673443

RESUMO

Background: Studies have demonstrated that exposure to diesel exhaust particle (DEP) aggravates diabetes condition by inducing oxidative and pro-inflammatory effects. Morin hydrate (MH), a flavonol found in common guava, among others has been demonstrated to possess a variety of biological activities. The present study was designed to investigate the effects of morin hydrate (MH) on the pancreas of type-2 diabetic (T2D) wistar rats exposed to DEP. Methods: Rats were induced with type 2 diabetes by oral fructose therapy for 14 days followed by injection of streptozotocin (45 mg/kg). These rats were pre-treated with DEP (0.4 mg/kg and 0.5 mg/kg) through nasal instillation prior to receiving oral MH (30 mg/kg).This study determined oxidative stress parameters using biochemical assay, and some pancreatic genes involved in oxidative stress, inflammation and glucose uptake were quantified using RT-polymerase chain reaction (PCR). Results: The results indicate that MH reverses oxidative stress in T2D rats exposed to DEP via substantial increase in superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity and reduced glutathione (GSH) levels, but a decrease in malondialdehyde (MDA) and conjugated diene (CD) levels. Moreover, PCR assay showed that MH mitigate inflammation and oxidative stress but promote glucose uptake by increasing the mRNA expression of IL-10, HO-1, and GLUT 4; decreasing mRNA expression of IL-1 and modulating AKT/PI3K/GLUT4 and AMPK/GLUT4 signaling. Histopathological examination revealed that MH reverses DEP induced pancreatic fibrosis and necrosis. Conclusion: The results suggest that MH alleviate inflammation and oxidative stress and promote glucose uptake in the pancreas of type-2 diabetic rats, either in the presence or absence of DEP.

6.
Environ Sci Pollut Res Int ; 29(35): 52574-52589, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35262885

RESUMO

Air particulate matter exposure has been linked to cardiovascular and atherosclerosis as a result of increase oxidative stress and inflammatory response. This study aims to determine the effect of the use of hesperetin (HESP) as a therapeutic agent to mitigate the cardiovascular oxidative and pro-inflammatory effects of diesel exhaust particles in Wistar rats. DEP was collected from an Iveco cargo engine truck, and n-hexane fraction (hDEP) was obtained. Forty Wistar strains of male albino rats (6 weeks) were divided into 8 groups: control group received DMSO and CMC-Na; other groups received either n-hexane extract of DEP (0.064 or 0.640 mg/kg hDEP) or Standard Reference Material 2975 (0.064 mg/kg hSRM) in the presence or absence of 200 mg/kg HESP. Extracts were administered orally. Serum lipids, lipid peroxidation (LPO), conjugated dienes (CDs), and GSH levels were determined. Also, inflammatory cytokines, PCSK-9, LDL-receptor, and antioxidant genes expression were assessed by RT-PCR in both the heart and aorta. The molecular interaction of targeted proteins with HESP was assessed by the in silico approach. Extracts of DEP caused a significant (p < 0.001) increase in serum lipids but significantly decreased HDL-CHOL. It also increased CDs and MDA levels but decreased GSH levels. In addition, the particulate extracts caused a significant (p < 0.001) increase in pro-inflammatory genes expression in the heart and aorta but significantly decreased IL-10 and LDL-R gene expressions. Pre-treatment with hesperetin significantly reversed all these effects. This study shows that hesperetin has the ability to protect against DEP-induced oxidative stress and inflammation in the cardiovascular system.


Assuntos
Sistema Cardiovascular , Emissões de Veículos , Animais , Hesperidina , Inflamação/induzido quimicamente , Lipídeos , Masculino , Estresse Oxidativo , Material Particulado/farmacologia , Ratos , Ratos Wistar , Emissões de Veículos/toxicidade
7.
Neurotoxicology ; 90: 158-171, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35337893

RESUMO

The neurobehavioral, brain redox-stabilizing and neurochemical modulatory properties of catechin and quercetin in rotenone-induced Parkinsonism, and the involvement of NF-κB-mediated inflammation, were investigated. Male Wistar rats subcutaneously administered with multiple doses of 1.5 mg/kg rotenone were post-treated with 5-20 mg/kg catechin or quercetin. This was followed by neurobehavioral evaluation, biochemical estimations, and assessment of neurotransmitter metabolism in the striatum. Expression of genes involved in the canonical pathway for the activation of NF-κB mediated inflammation (IL-1ß, TNF-α, NF-κB, and IκKB) and the pro-apoptotic gene, p53, in the striatum was determined by RT-qPCR. Catechin and quercetin mitigated neurobehavioral deficits caused by rotenone. Both flavonoids attenuated striatal redox stress and neurochemical dysfunction, optimized disturbed dopamine metabolism, and improved depletion of neuron density caused by rotenone toxicity. While administration of catechin produced a more pronounced attenuating effect on IL-1ß, TNF-α, and p53 genes, the attenuating effect of quercetin (20 mg/kg) was more pronounced on NF-κB and IκKB gene expressions when compared to the group administered with rotenone only. Comparatively, quercetin demonstrated superior protection against rotenone neurotoxicity. It is concluded that catechin and quercetin have potential relevance in Parkinson's disease therapy through amelioration of redox stress, optimization of dopamine metabolism, and modulation of anti-inflammatory and anti-apoptotic pathways.


Assuntos
Catequina , Fármacos Neuroprotetores , Transtornos Parkinsonianos , Animais , Catequina/efeitos adversos , Dopamina/metabolismo , Genes p53 , Inflamação/metabolismo , Masculino , NF-kappa B/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Quercetina/farmacologia , Ratos , Ratos Wistar , Rotenona/toxicidade , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
J Biochem Mol Toxicol ; 36(5): e23022, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35187747

RESUMO

This study examined the effect of dihydroquercetin (DHQ), also knofigurewn as taxifolin, on rotenone-induced Parkinsonism in rats. Male Wistar rats were administered 1.5 mg/kg rotenone for 10 days and subsequently treated with 0.25-1.0 mg/kg DHQ for 3 days followed by the assessment of parkinsonian symptoms. Brain striatal redox stress and neurochemical dysfunction markers were assessed spectrophotometrically. Histopathological evaluation of the striatum was done by hematoxylin and eosin staining technique. The expression of genes involved in the activation of NF-κB signaling pathway (IL-1ß, TNF-α, NF-κB and IκKB), and the p53 gene in the striatum were determined by RT-qPCR. DHQ attenuated parkinsonian symptoms as well as striatal redox stress, neurochemical dysfunction, and histological alterations occasioned by rotenone toxicity. Importantly, DHQ significantly suppressed the rotenone-induced upregulation of IL-1ß, NF-κB, and IκKB expression (p < 0.05) in the striatum of parkinsonian rats. DHQ demonstrated notable neurotherapeutic potential against rotenone-induced Parkinsonism in rats by improving parkinsonian symptoms (bradykinesia, catalepsy, postural instability, impaired locomotor behavior, and tremor) and neurochemical dysfunctions via modulation of genes involved in the activation of the canonical pathway of NF-κB-mediated inflammation.


Assuntos
Fármacos Neuroprotetores , Transtornos Parkinsonianos , Animais , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Quercetina/análogos & derivados , Ratos , Ratos Wistar , Rotenona/toxicidade
9.
J Diabetes Metab Disord ; 20(1): 245-260, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34178835

RESUMO

OBJECTIVES: Diabetes nephropathy (DN) is one of the complications of diabetes mellitus (DM) marked by gradual progressive loss of renal function. SOCS/JAK/STAT and PI3K/Akt/PTEN signalling pathways are among the chain of interactions implicated in the onset, progression and pathology of DN. Momordica charantia (bitter melon) is often used in folk medicine as therapy for DM due to its hypoglycemic properties. This study was designed to evaluate M. charantia silver nanoparticles' therapeutic effect on DN-induced by streptozotocin (STZ) in Wistar rats. METHODS: The M. charantia nanoparticles used was synthesized using the filtrate from the plant methanolic extract added to 1 mM concentration of aqueous silver nitrate. DM was induced in Wistar rats by intraperitoneal injection of STZ (65 mg/kg). The animals' treatment groups were divided into; Diabetic control (65 mg/kg STZ), Control, and groups treated with silver nitrate (10 mg/kg), M. charantia nanoparticles (50 mg/kg), metformin (100 mg/kg), and plant extract (100 mg/kg). Treatment was terminated after 11 days. RT-PCR determined renal mRNA expression of Akt, PI3k, PTEN, TGF-ß, JAK2, STAT3, STAT5, SOCS3, SOCS4 and glucokinase (GCK). Consequently, characterized compounds from M. charantia identified from literatures were docked with PI3K, JAK2 and TGF-ß and STAT3 to retrieve potential hits. RESULTS: Oral administration of M. charantia nanoparticles (50 mg/kg) to STZ-induced diabetic untreated rats significantly ((p < 0.05) down-regulated the mRNA expression of Akt, PI3k, TGF-ß, JAK2, STAT3 and upregulated the mRNA expression of PTEN, SOCS3 and SOCS4, thus establishing the role of M. charantia nanoparticles in alleviating DN in diabetic rats. Additionally, there was a significant up-regulation of glucose metabolizing gene (glucokinase) upon administering M. charantia nanoparticles. Molecular docking results showed 12 compounds from bitter melon with docking score ranging from -6.114 kcal/mol to -8.221 kcal/mol that are likely to exert anti-diabetic properties. CONCLUSION: Observation drawn from this study suggests that M. charantia nanoparticles ameliorate DN through regulation of SOCS/JAK/STAT and PI3K/Akt/PTEN signalling pathways.

10.
Mol Divers ; 25(3): 1761-1773, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33201386

RESUMO

SARS-CoV-2 is a new strain of Coronavirus that caused the pneumonia outbreak in Wuhan, China and has spread to over 200 countries of the world. It has received worldwide attention due to its virulence and high rate of infection. So far, several drugs have experimented against SARS-CoV-2, but the failure of these drugs to specifically interact with the viral protease necessitates urgent measure to boost up researches for the development of effective therapeutics against SARS-CoV-2. Papain-like protease (PLpro) of the viral polyproteins is essential for maturation and infectivity of the virus, making it one of the prime targets explored for SARS-CoV-2 drug design. This study was conducted to evaluate the efficacy of ~ 50,000 natural compounds retrieved from IBS database against COVID-19 PLpro using computer-aided drug design. Based on molecular dock scores, molecular interaction with active catalytic residues and molecular dynamics (MD) simulations studies, STOCK1N-69160 [(S)-2-((R)-4-((R)-2-amino-3-methylbutanamido)-3-(4-chlorophenyl) butanamido) propanoic acid hydrochloride] has been proposed as a novel inhibitor against COVID-19 PLpro. It demonstrated favourable docking score, the free energy of binding, interacted with key amino acid residues necessary for PLpro inhibition and also showed significant moderation for parameters investigated for ADME/tox (Adsorption, distribution, metabolism, excretion and toxicological) properties. The edge of the compound was further established by its stability in MD simulation conducted for 30 ns employing GROMACS software. We propose that STOCK1N-69160 is worth further investigation for preventing SARS-CoV-2.


Assuntos
Absorção Fisico-Química , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Propionatos/química , Propionatos/farmacologia , SARS-CoV-2/enzimologia , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Desenho de Fármacos , Propionatos/metabolismo , Propionatos/toxicidade , Conformação Proteica , SARS-CoV-2/efeitos dos fármacos , Software
11.
J Diabetes Metab Disord ; 19(1): 197-204, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32420297

RESUMO

Background: Annona muricata (Annonaceae) known as soursop is a common tropical plant species known for its numerous medicinal properties including obesity. The underlying mechanism of anti-obesity effect of A. muricata was investigated. The fat mass and obesity associated protein (FTO) is a validated potential target for anti-obesity drugs. Methods: The interaction of compounds previously characterized from A. muricata was investigated against FTO using Autodock Vina. Also, modulation of FTO and STAT-3 mRNA expression by A. muricata was investigated in high fat diet induced obese rats (HFDR) using RT-PCR. Results: A significant up-regulation of FTO gene was observed in HFDR when compared to control rats, while administration of A. muricata (200 mg/kg) significantly (p < 0.05) down-regulated FTO gene expression when compared to HFDR group. The effect of obesity on STAT-3 gene expression was also reversed by A. muricata (200 mg/kg). In silico study revealed annonaine and annonioside (-9.2 kcal/mol) exhibited the highest binding affinity with FTO, followed by anonaine and isolaureline (-8.6 kcal/mol). Arg-96 is a critical amino acid enhancing anonaine, isolaureline-FTO binding. Conclusion: This study suggests the possible anti-obesity mechanism of A. muricata is via down-regulation of FTO with concomitant up-regulation of STAT-3 genes. This study confirmed the use of this plant in the management of obesity and the probable compounds responsible for its antiobesity effect are annonaine and annonioside.

12.
Heliyon ; 5(3): e01426, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30976698

RESUMO

Studies have shown that diesel exhaust particles (DEP) induced oxidative stress and inflammation. This present study examined the molecular effects of aqueous rooibos extract (RE) on the cardiovascular toxic effect of methanol extract of DEP in exposed Wistar rats. The results showed that DEP caused significant (p < 0.001) increase in MDA and CDs levels in the aorta and heart but this increase was significantly (p < 0.001) attenuated by rooibos extract. DEP induced IL-8, TNFα, IL-1ß and decreased IL-10 gene expressions, all of which were reversed in the presence of rooibos extract. The expression of NF-κB, and IκKB genes were also significantly (p < 0.001) induced by DEP in both tissues, but pre-treatment with RE attenuated these effects. In contrast, DEP repressed IκB mRNA level, which was significantly (p < 0.001) reversed by rooibos extract pre-treatment. In addition, pre-treatment with rooibos extract attenuated the increased Nrf2 and HO-1 mRNA levels caused by DEP. This indicates the potential of rooibos extract to protect against DEP-induced cardiovascular toxicity.

13.
Phytomedicine ; 59: 152898, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30986715

RESUMO

BACKGROUND: Previous evidence show foods and beverages rich in polyphenolic compounds to have favourable effects on the cardiovascular system. HYPOTHESIS: The current study assessed the modulation of oxidative stress and associated inflammation induced by diesel exhaust particles (DEP - SRM 2975) by pre-treatment of human umbilical vein endothelial cells (HUVECs) with aqueous extracts of rooibos [fermented (FR) as well as green form (GR)] and honeybush [fermented form (FH)]. STUDY DESIGN: HUVEC are either exposed to DEP (10 µg/ml) for 4 h or pre-treated with 40 and 60 µg/ml of FR or GH or FR, or 50 µg/ml orientin (OR) for 6 h prior to DEP exposure. METHODS: In vitro antioxidant capacity of the extracts was assessed and the polyphenol contents were also assessed by HPLC. ROS, cell viability, lactate dehydrogenase leakage, lipid peroxidation, GSH:GSSG ratios, conjugated diene and protein carbonyl levels were determined as indices of oxidative stress and cytotoxicity. RT-qPCR and western blot were used to assess inflammatory cytokines and antioxidant genes expression. RESULTS: DEP caused a dose and time-dependent increase in ROS production, significant (p < 0.001) increase in protein carbonyl (PC) formation, thiobarbituric acid reactive substances and conjugated dienes levels (p < 0.01) and a significant reduction in glutathione (GSH) redox status. Pre-incubation with either the herbal extracts or orientin attenuated these effects. The significant increase in IL-1α, IL-6, IL-8, VCAM-1 and ATF4 gene expression caused by DEP (10 µg/ml) were also attenuated by the presence of the FR, GR and FH extracts, and OR . Pre-treatment with the rooibos extracts or flavone orientin enhanced cell viability, reduced LDH leakage, enhanced mRNA expression of NQO1 and Nrf2, but repressed CYP1B1 mRNA induced by DEP. Western blot showed both the herbal tea extracts and orientin to enhance NQO1 and γGSC protein induction by DEP. CONCLUSION: Taken together, the herbal extracts offer protection against DEP-induced oxidative stress and inflammatory response.


Assuntos
Fabaceae/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Emissões de Veículos/toxicidade , Antioxidantes/metabolismo , Aspalathus/química , Citocromo P-450 CYP1B1/genética , Alimentos Fermentados , Flavonoides/farmacologia , Glucosídeos/farmacologia , Glutationa/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Extratos Vegetais/química , Polifenóis/análise , Substâncias Protetoras/farmacologia
14.
JCI Insight ; 3(19)2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30282830

RESUMO

Macrophages polarize into heterogeneous proinflammatory M1 and antiinflammatory M2 subtypes. Heme oxygenase 1 (HO-1) protects against inflammatory processes such as ischemia-reperfusion injury (IRI), organ transplantation, and atherosclerosis. To test our hypothesis that HO-1 regulates macrophage polarization and protects against IRI, we generated myeloid-specific HO-1-knockout (mHO-1-KO) and -transgenic (mHO-1-Tg) mice, with deletion or overexpression of HO-1, in various macrophage populations. Bone marrow-derived macrophages (BMDMs) from mHO-1-KO mice, treated with M1-inducing LPS or M2-inducing IL-4, exhibited increased mRNA expression of M1 (CXCL10, IL-1ß, MCP1) and decreased expression of M2 (Arg1 and CD163) markers as compared with controls, while BMDMs from mHO-1-Tg mice displayed the opposite. A similar pattern was observed in the hepatic M1/M2 expression profile in a mouse model of liver IRI. mHO-1-KO mice displayed increased hepatocellular damage, serum AST/ALT levels, Suzuki's histological score of liver IRI, and neutrophil and macrophage infiltration, while mHO-1-Tg mice exhibited the opposite. In human liver transplant biopsies, subjects with higher HO-1 levels showed lower expression of M1 markers together with decreased hepatocellular damage and improved outcomes. In conclusion, myeloid HO-1 expression modulates macrophage polarization, and protects against liver IRI, at least in part by favoring an M2 phenotype.


Assuntos
Rejeição de Enxerto/imunologia , Heme Oxigenase-1/metabolismo , Transplante de Fígado/efeitos adversos , Macrófagos/imunologia , Proteínas de Membrana/metabolismo , Traumatismo por Reperfusão/imunologia , Adolescente , Adulto , Aloenxertos/irrigação sanguínea , Aloenxertos/citologia , Aloenxertos/patologia , Animais , Biópsia , Modelos Animais de Doenças , Feminino , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/patologia , Heme Oxigenase-1/genética , Humanos , Fígado/irrigação sanguínea , Fígado/citologia , Fígado/patologia , Testes de Função Hepática , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Traumatismo por Reperfusão/diagnóstico , Traumatismo por Reperfusão/patologia , Transdução de Sinais/imunologia , Adulto Jovem
15.
Pathophysiology ; 25(4): 327-333, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29764719

RESUMO

Momordica charantia (bitter lemon) belongs to the cucurbitaceae family which has been extensively used in traditional medicines for the cure of various ailments such as cancer and diabetes. The underlying mechanism of M. charantia to maintain glycemic control was investigated. GLP-1 and DPP-4 gene modulation by M. charantia (5-20% inclusion in rats diet) was investigated in vivo by RT-PCR and possible compounds responsible for diabetic action predicted through in silico approach. Phytochemicalss previously characterized from M. charantia were docked into glucacon like peptide-1 receptor (GLP-1r), dipeptidyl peptidase (DPP4) and Takeda-G-protein-receptor-5 (TGR5) predicted using Autodock Vina. The results of the in silico suggests momordicosides D (ligand for TGR5), cucurbitacin (ligand for GLP-1r) and charantin (ligand for DPP-4) as the major antidiabetic compounds in bitter lemon leaf. M. charantia increased the expression of GLP-1 by about 295.7% with concomitant decreased in expression of DPP-4 by 87.2% with 20% inclusion in rat's diet. This study suggests that the mechanism underlying the action of these compounds is through activation of TGR5 and GLP-1 receptor with concurrent inhibition of DPP4. This study confirmed the use of this plant in diabetes management and the possible bioactive compounds responsible for its antidiabetic property are charantin, cucurbitacin and momordicoside D and all belong to the class of saponins.

16.
Inflammation ; 41(1): 356-363, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29047037

RESUMO

Diesel exhaust particles (DEP) are an important component of air particulate matter, generated from the incomplete combustion of fossil fuel in diesel engines. Several epidemiological and experimental data have shown the ability of DEP to induce oxidative stress and pro-inflammatory response as mechanisms in macrophage activation and dysfunction. Macrophages are very important to immunity and immune response due to their ability to phagocyte microbes and parasites. They also respond to toxic chemicals, such as DEP, in the environment and studies have shown that their functions may be impaired by their exposure to DEP. For instance, the ultrafine particles (UFP) of DEP are capable of penetrating deep into the lungs and getting deposited in the alveolar component, where they can mitigate against the phagocytosis function of the alveolar macrophages. In this review, data linking DEP exposure to macrophage activation and dysfunction are addressed together with the various mechanisms involved in these DEP-induced effects.


Assuntos
Exposição por Inalação/efeitos adversos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Material Particulado/efeitos adversos , Fagocitose/efeitos dos fármacos , Emissões de Veículos/toxicidade , Animais , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Estresse Oxidativo/efeitos dos fármacos
17.
Toxicol Lett ; 270: 88-95, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28189649

RESUMO

Air particulate matter (PM) is an important component of air pollution, which has been reported to play important role in the adverse health effects of the latter. Extensive experimental data and epidemiological studies have shown that the increased cardiovascular morbidity and mortality and atherosclerosis caused by air pollution are mainly due to the PM component. Implicated in these adverse health effects of PM, is their ability to induce oxidative stress and pro-inflammatory events in the vascular system. The association between the cardiovascular ischemic events and atherosclerosis induced by PM has been linked to the ultrafine and fine components. These particles have a high content of redox cyclic chemicals. This, together with their ability to combine with proatherogenic molecules enhanced tissue oxidative stress. Studies have shown that the oxidative stress induced by PM could up-regulates the expression of phase I and phase II metabolize enzymes. This up-regulation occurs by the activation of transcription factors (such as nuclear factor (erythroid-derived 2) -like 2-related factor (Nrf2) and aryl hydrocarbon receptor (AhR)). This review will focus on data supporting the role of oxidative stress and inflammation in PM-induced cardiovascular diseases and atherosclerosis and the importance of Nrf2-and AhR- dependent regulatory pathways in the PM-induced cardiovascular events and atherosclerosis.


Assuntos
Aterosclerose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Inflamação/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Poluição do Ar , Aterosclerose/induzido quimicamente , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Humanos , Inflamação/induzido quimicamente , Fator 2 Relacionado a NF-E2/genética , Tamanho da Partícula , Material Particulado/análise , Espécies Reativas de Oxigênio/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Regulação para Cima
18.
BMC Pharmacol Toxicol ; 16: 41, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26670903

RESUMO

BACKGROUND: Cadmium (Cd) is a well known environmental and industrial toxicant causing damaging effects in numerous organs. In this study, we examined the role of heme oxygenase-1 (HO-1) in modulating the Cd-induced apoptosis in human hepatoma (HepG2) cells after 24 h exposure. METHODS: HepG2 cells were exposed to 5 and 10 µM Cd as CdCl2 for 24 h while other sets of cells were pre-treated with either 10 µM Cobalt protoporphyrin (CoPPIX) or 10 µM Tin protoporphyrin (SnPPIX) for 24 h, or 50 µM Z-DEVD-FMK for 1 h before exposure to 5 and 10 µM CdCl2 for 24 h. Expressions of caspase 3, cytosolic cytochrome c, mitochondrial Bax and anti-apoptotic BCL-xl proteins were assessed by western blot. Intracellular reactive oxygen species (ROS) production was determined using the dihydrofluorescein diacetate (H2DFA) method. Cell viability was assessed by MTT assay, while a flow cytometry method was used to assess the level of apoptosis in the cell populations. RESULTS: Our results show that there were a significant increase in the expression of cytosolic cytochrome c, mitochondrial Bax protein, and caspase 3 at 5 and 10 µM compared to the control, but these increases were attenuated by the presence of CoPPIX. The presence of SnPPIX significantly enhanced Cd-induced caspase 3 activities. CoPPIX significantly decreased the level of ROS production by 24.6 and 22.2 % in 5 and 10 µM CdCl2, respectively, but SnPPIX caused a significant increase in ROS production in the presence of CdCl2. HepG2 cell viability was also significantly impaired by 13.89 and 32.53 % in the presence of 5 and 10 µM CdCl2, respectively, but the presence of CoPPIX and Z-DEVD-FMK significantly enhanced cell survival, while SnPPIX enhanced Cd-impaired cell viability. The presence of CoPPIX and Z-DEVD-FMK also significantly decreased the population of apoptotic and necrotic cells compared with Cd. CONCLUSION: In summary, the present study showed that HO-1 attenuates the Cd-induced caspase 3 dependent pathway of apoptosis in HepG2 cells, probably by modulating Cd-induced oxidative stress.


Assuntos
Apoptose/efeitos dos fármacos , Cádmio/farmacologia , Caspase 3/metabolismo , Heme Oxigenase-1/metabolismo , Western Blotting , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Inibidores de Cisteína Proteinase/farmacologia , Citocromos c/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Metaloporfirinas/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Oligopeptídeos/farmacologia , Protoporfirinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
19.
Toxicol Appl Pharmacol ; 284(3): 281-291, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25620054

RESUMO

Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25µg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM.


Assuntos
Poluentes Atmosféricos/toxicidade , Células Endoteliais/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Moléculas de Adesão Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Inibidores Enzimáticos/toxicidade , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/genética , Humanos , Mediadores da Inflamação/metabolismo , L-Lactato Desidrogenase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Fatores de Tempo , Transfecção , Resposta a Proteínas não Dobradas/efeitos dos fármacos
20.
Part Fibre Toxicol ; 10: 61, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24330719

RESUMO

OBJECTIVE: Diesel exhaust particulate (DEP), a major component of urban air pollution, has been linked to atherogenesis and precipitation of myocardial infarction. We hypothesized that DEP exposure would increase and destabilise atherosclerotic lesions in apolipoprotein E deficient (ApoE-/-) mice. METHODS: ApoE-/- mice were fed a 'Western diet' (8 weeks) to induce 'complex' atherosclerotic plaques, with parallel experiments in normal chow fed wild-type mice. During the last 4 weeks of feeding, mice received twice weekly instillation (oropharyngeal aspiration) of 35 µL DEP (1 mg/mL, SRM-2975) or vehicle (saline). Atherosclerotic burden was assessed by en-face staining of the thoracic aorta and histological examination of the brachiocephalic artery. RESULTS: Brachiocephalic atherosclerotic plaques were larger in ApoE-/- mice treated with DEP (59 ± 10%) than in controls (32 ± 7%; P = 0.017). In addition, DEP-treated mice had more plaques per section of artery (2.4 ± 0.2 vs 1.8 ± 0.2; P = 0.048) and buried fibrous layers (1.2 ± 0.2 vs 0.4 ± 0.1; P = 0.028). These changes were associated with lung inflammation and increased antioxidant gene expression in the liver, but not with changes in endothelial function, plasma lipids or systemic inflammation. CONCLUSIONS: Increased atherosclerosis is caused by the particulate component of diesel exhaust producing advanced plaques with a potentially more vulnerable phenotype. These results are consistent with the suggestion that removal of the particulate component would reduce the adverse cardiovascular effects of diesel exhaust.


Assuntos
Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Placa Aterosclerótica/induzido quimicamente , Placa Aterosclerótica/patologia , Emissões de Veículos/toxicidade , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Apolipoproteínas E/genética , Coagulação Sanguínea/efeitos dos fármacos , Tronco Braquiocefálico/efeitos dos fármacos , Tronco Braquiocefálico/metabolismo , Tronco Braquiocefálico/patologia , Proteína C-Reativa/análise , Modelos Animais de Doenças , Fibrinogênio/análise , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Orofaringe/metabolismo , Material Particulado/farmacocinética , Placa Aterosclerótica/sangue , Placa Aterosclerótica/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...