Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pulm Circ ; 11(2): 20458940211012591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34035895

RESUMO

Inhalation profiles to support use of dry powder inhalers for drug delivery in patients with pulmonary arterial hypertension have not been reported. We aimed to evaluate the inspiratory flow pattern associated with low and medium flow resistance dry powder inhaler devices (RS01-L and RS01-M, respectively) in patients with pulmonary arterial hypertension. This single-center study enrolled patients with pulmonary arterial hypertension associated with connective tissue disease (n = 10) and idiopathic pulmonary arterial hypertension (n = 10) to measure the following inhalation parameters: inspiratory effort (kPa), peak inspiratory flow rate (L/min), inhaled volume (L), and flow increase rate (L/s2) using the two devices. We identified a trend toward higher mean pulmonary artery pressure in the idiopathic pulmonary arterial hypertension group (50 ± 13 mmHg vs. 40 ± 11 mmHg in pulmonary arterial hypertension associated with connective tissue disease; p = 0.077). On average, peak inspiratory flow rate was higher with RS01-L vs. RS01-M (84 ± 19.7 L/min vs. 70.4 ± 13.2 L/min; p = 0.015). In the overall group, no differences between RS01-L and RS01-M were observed for inhaled volume, inspiratory effort, or flow increase rate. Inhaled volume with RS01-L was higher in pulmonary arterial hypertension associated with connective tissue disease vs. idiopathic pulmonary arterial hypertension patients: 1.6 ± 0.4 L vs. 1.3 ± 0.2 L; p = 0.042. For the RS01-L, inhaled volume correlated with forced expiratory volume in one second (r = 0.460, p = 0.030) and forced vital capacity (r = 0.507, p = 0.015). In patients with pulmonary arterial hypertension associated with connective tissue disease using RS01-L, both inspiratory effort and flow increase rate were highly correlated with pulmonary vascular compliance (r = 0.903, p = 0.0001 and r = 0.906, p = 0.0001; respectively); while with RS01-M, inspiratory effort was highly correlated with pulmonary vascular compliance (r = 0.8, p = 0.001). Our data suggest that the use of RS01-L and RS01-M dry powder inhaler devices allowed adequate inspiratory flow in pulmonary arterial hypertension patients. The correlation between flow increase rate and pulmonary vascular compliance in pulmonary arterial hypertension associated with connective tissue disease deserves further investigation.

2.
Pulm Circ ; 8(1): 2045893218755325, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29309261

RESUMO

Ambrisentan in 22 patients with pulmonary hypertension diagnosed during exercise (ePH) improved pulmonary hemodynamics; however, there was only a trend toward increased maximum oxygen uptake (VO2max) secondary to decreased maximum exercise systemic oxygen extraction (Ca-vO2). We speculate that improved pulmonary hemodynamics at maximum exercise "unmasked" a pre-existing skeletal muscle abnormality.

3.
Pulm Circ ; 7(2): 531-538, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28597763

RESUMO

A growing body of evidence suggests that exercise pulmonary hypertension (ePH) is an early form of pulmonary arterial hypertension (PAH). Identifying the disease at an early, potentially more responsive phase, and initiating treatment may improve functional status and prevent progression to severe forms of PAH. This was a single-center, open-label six-month treatment trial to evaluate the effect of ambrisentan on pulmonary hemodynamics and exercise capacity in ePH utilizing invasive cardiopulmonary exercise testing (iCPET). After six months of treatment with ambrisentan, patients repeated iCPET; exercise capacity, symptoms, and pulmonary hemodynamics were reassessed. Twenty-two of 30 patients completed the treatment phase and repeat iCPET. After six months of treatment there was a significant decline in peak exercise mPAP (-5.2 ± 5.6 mmHg, P = 0.001), TPG (-7.1 ± 8.0 mmHg, P = 0.001), PVR (-0.9 ± 0.7 Woods units, P = 0.0002), and Ca-vO2 (-1.8 ± 2.3 mL/dL, P = 0.0002), with significant increases in peak PCWP (+2.9 ± 5.6 mmHg, P = 0.02), PVC (+0.8 ± 1.4 mL/mmHg, P = 0.03), and CO (+2.3 ± 1.4 L/min, P = 0.0001). A trend toward increased VO2max (+4.4 ± 2.6% predicted, P = 0.07) was observed. In addition, there were improvements in 6MWD and WHO FC after 24 weeks. Our findings suggest that treatment of ePH with ambrisentan results in improved pulmonary hemodynamics and functional status over a six-month period. Treatment of ePH may prevent the progression of vascular remodeling and development of established PAH.

4.
PLoS Med ; 10(12): e1001577; discussion e1001577, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24391478

RESUMO

BACKGROUND: Mitochondrial DNA (mtDNA) is a critical activator of inflammation and the innate immune system. However, mtDNA level has not been tested for its role as a biomarker in the intensive care unit (ICU). We hypothesized that circulating cell-free mtDNA levels would be associated with mortality and improve risk prediction in ICU patients. METHODS AND FINDINGS: Analyses of mtDNA levels were performed on blood samples obtained from two prospective observational cohort studies of ICU patients (the Brigham and Women's Hospital Registry of Critical Illness [BWH RoCI, n = 200] and Molecular Epidemiology of Acute Respiratory Distress Syndrome [ME ARDS, n = 243]). mtDNA levels in plasma were assessed by measuring the copy number of the NADH dehydrogenase 1 gene using quantitative real-time PCR. Medical ICU patients with an elevated mtDNA level (≥3,200 copies/µl plasma) had increased odds of dying within 28 d of ICU admission in both the BWH RoCI (odds ratio [OR] 7.5, 95% CI 3.6-15.8, p = 1×10(-7)) and ME ARDS (OR 8.4, 95% CI 2.9-24.2, p = 9×10(-5)) cohorts, while no evidence for association was noted in non-medical ICU patients. The addition of an elevated mtDNA level improved the net reclassification index (NRI) of 28-d mortality among medical ICU patients when added to clinical models in both the BWH RoCI (NRI 79%, standard error 14%, p<1×10(-4)) and ME ARDS (NRI 55%, standard error 20%, p = 0.007) cohorts. In the BWH RoCI cohort, those with an elevated mtDNA level had an increased risk of death, even in analyses limited to patients with sepsis or acute respiratory distress syndrome. Study limitations include the lack of data elucidating the concise pathological roles of mtDNA in the patients, and the limited numbers of measurements for some of biomarkers. CONCLUSIONS: Increased mtDNA levels are associated with ICU mortality, and inclusion of mtDNA level improves risk prediction in medical ICU patients. Our data suggest that mtDNA could serve as a viable plasma biomarker in medical ICU patients.


Assuntos
Biomarcadores/sangue , DNA Mitocondrial/sangue , Mortalidade Hospitalar , Unidades de Terapia Intensiva/estatística & dados numéricos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...