Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Aquat Toxicol ; 151: 105-13, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24411165

RESUMO

The discovery that selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are present and bioaccumulate in aquatic ecosystems have spurred studies of fish serotonin transporters (SERTs) and changes in SSRI-sensitive behaviors as adverse outcomes relevant for risk assessment. Many SSRIs also act at serotonin 5-HT1A receptors. Since capitalizing on this action may improve treatments of clinical depression and other psychiatric disorders, novel multimodal drugs that agonize 5-HT1A and block SERT were introduced. In mammals both 5-HT1A and CB agonists, such as buspirone and WIN55,212-2, reduce anxious behaviors. Immunological and behavioral evidence suggests that 5-HT1A-like receptors may function similarly in zebrafish (Danio rerio), yet their pharmacological properties are not well characterized. Herein we compared the density of [(3)H] 8-hydroxy-2-di-n-propylamino tetralin (8-OH-DPAT) binding to 5-HT1A-like sites in the zebrafish brain, to that of similarly Gαi/o-coupled cannabinoid receptors. [(3)H] 8-OH-DPAT specific binding was 176±8, 275±32, and 230±36fmol/mg protein in the hypothalamus, optic tectum, and telencephalon. [(3)H] WIN55,212-2 binding density was higher in those same brain regions at 6±0.3, 5.5±0.4 and 7.3±0.3pm/mg protein. The aquatic light-dark plus maze was used to examine behavioral effects of 5-HT1A and CB receptor agonists on zebrafish novelty-based anxiety. With acute exposure to the 5-HT1A partial-agonist buspirone (50mg/L), or dietary exposure to WIN55,212-2 (7µg/week) zebrafish spent more time in and/or entered white arms more often than controls (p<0.05). Acute exposure to WIN55,212-2 at 0.5-50mg/L reduced mobility. These behavioral findings suggest that azipirones, like cannabinoid agonists, have anxiolytic and/or sedative properties on fish in novel environments. These observations highlight the need to consider potential ecological risks of azapirones and multimodal antidepressants in the future.


Assuntos
Comportamento Animal/efeitos dos fármacos , Receptores de Canabinoides/metabolismo , Receptores de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Animais , Ligação Proteica/efeitos dos fármacos
2.
Occup Ther Health Care ; 26(2-3): 163-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23899140

RESUMO

ABSTRACT The Wellness Recovery Action Plan (WRAP) is a tool used by persons living with psychiatric disabilities, which guides the development of an individualized plan of action to help achieve and/or maintain wellness and recovery. Through use of sensory-based treatment, the clients are able to explore sensory preferences and use this information when developing their plan. The WRAP and sensory-based treatment are complementary in nature and can be successfully blended to promote wellness and recovery for this population. As the occupational therapists are equipped to educate the clients on the link between sensory preferences and obtainment of wellness and recovery, this paper describes how the occupational therapy practitioners developed a program that used both for implementation of services.

3.
Int J Comp Psychol ; 23(1): 43-61, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20523756

RESUMO

Zebrafish (Danio rerio) associative responses are useful for pharmaceutical and toxicology screening, behavioral genetics, and discovering neural mechanisms involved in behavioral modulation. In novel environments, zebrafish swim to tank bottoms and dark backgrounds, behaviors attributed to anxiety associated with threat of predation. To examine possible genetic effects of inbreeding and segregation on this behavior, we compared Zebrafish International Resource Center (ZIRC) AB and WIK lines to zebrafish and GloFish® from a pet store (PETCO) in two qualitatively different novel environments: the dive tank and aquatic light/dark plus maze. Behavior was observed in the dive tank for 5 min, immediately followed by 5 min in the light/dark plus maze. Among strains, WIK spent more time in the dive tank top than AB (76 ± 30 vs. 17 ± 11 sec), and AB froze in the plus maze center for longer than PETCO or GloFish® (162 ± 61 vs. 72 ± 29 or 27 ± 27 sec). Further, behavior of zebrafish exposed for 3 min to 25 mg/L nicotine, desipramine, chlordiazepoxide, yohimbine, 100 mg/L citalopram, 0.05% DMSO, or 0.5% ethanol was compared to controls. Approximately 0.1% of drug is available in brain after such exposures. Desipramine or citalopram-exposed fish spent more time in the dive tank top, and both reuptake inhibitors bound to serotonin transporters in zebrafish brain with high affinity (K(i) = 7 ± 5 and 9 ± 5 nM). In the plus maze, chlordiazepoxide, ethanol and DMSO-exposed fish crossed more lines and spent more time in white arms. Neither 25 mg/L nicotine nor yohimbine altered zebrafish behavior in novel environments, but nicotine was anxiolytic at higher doses. Overall, the light/dark plus maze and dive tank are distinct behavioral measures that are sensitive to treatment with anxiolytic compounds, but zebrafish line selection and solvents can influence baseline behavior in these tests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...