Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(2): pgae082, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38725532

RESUMO

Deep brain stimulation (DBS) is a powerful tool for the treatment of circuitopathy-related neurological and psychiatric diseases and disorders such as Parkinson's disease and obsessive-compulsive disorder, as well as a critical research tool for perturbing neural circuits and exploring neuroprostheses. Electrically mediated DBS, however, is limited by the spread of stimulus currents into tissue unrelated to disease course and treatment, potentially causing undesirable patient side effects. In this work, we utilize infrared neural stimulation (INS), an optical neuromodulation technique that uses near to midinfrared light to drive graded excitatory and inhibitory responses in nerves and neurons, to facilitate an optical and spatially constrained DBS paradigm. INS has been shown to provide spatially constrained responses in cortical neurons and, unlike other optical techniques, does not require genetic modification of the neural target. We show that INS produces graded, biophysically relevant single-unit responses with robust information transfer in rat thalamocortical circuits. Importantly, we show that cortical spread of activation from thalamic INS produces more spatially constrained response profiles than conventional electrical stimulation. Owing to observed spatial precision of INS, we used deep reinforcement learning (RL) for closed-loop control of thalamocortical circuits, creating real-time representations of stimulus-response dynamics while driving cortical neurons to precise firing patterns. Our data suggest that INS can serve as a targeted and dynamic stimulation paradigm for both open and closed-loop DBS.

2.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37904955

RESUMO

Deep brain stimulation (DBS) is a powerful tool for the treatment of circuitopathy-related neurological and psychiatric diseases and disorders such as Parkinson's disease and obsessive-compulsive disorder, as well as a critical research tool for perturbing neural circuits and exploring neuroprostheses. Electrically-mediated DBS, however, is limited by the spread of stimulus currents into tissue unrelated to disease course and treatment, potentially causing undesirable patient side effects. In this work, we utilize infrared neural stimulation (INS), an optical neuromodulation technique that uses near to mid-infrared light to drive graded excitatory and inhibitory responses in nerves and neurons, to facilitate an optical and spatially constrained DBS paradigm. INS has been shown to provide spatially constrained responses in cortical neurons and, unlike other optical techniques, does not require genetic modification of the neural target. We show that INS produces graded, biophysically relevant single-unit responses with robust information transfer in thalamocortical circuits. Importantly, we show that cortical spread of activation from thalamic INS produces more spatially constrained response profiles than conventional electrical stimulation. Owing to observed spatial precision of INS, we used deep reinforcement learning for closed-loop control of thalamocortical circuits, creating real-time representations of stimulus-response dynamics while driving cortical neurons to precise firing patterns. Our data suggest that INS can serve as a targeted and dynamic stimulation paradigm for both open and closed-loop DBS.

3.
Epilepsy Behav ; 122: 108124, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34237676

RESUMO

Sudden death in epilepsy or SUDEP is a fatal condition that accounts for more than 4000 deaths each year. Limited clinical and preclinical data on sudden death suggest critical contributions from autonomic, cardiac, and respiratory pathways. A potential mechanism for such sudden and severe cardiorespiratory dysregulation may be linked to acid reflux-induced laryngospasm. Here, we expand on our previous investigations and utilize a novel multimodal approach to provide visual evidence of acid reflux-initiated cardiorespiratory distress and subsequent sudden death in seizing rats. We used systemic kainic acid to acutely induce seizure activity in Long Evans rats, under urethane anesthesia. We recorded electroencephalography (EEG), electrocardiography (ECG), chest plethysmography, and esophageal pH signals through a multimodal recording platform, during simultaneous fast MRI scans of the rat stomach and esophagus. MRI images, in correlation with electrophysiology data were used to identify seizure progression, stomach acid movement up the esophagus, cardiorespiratory changes, and sudden death. In all cases of sudden death, esophageal pH recordings alongside MRI images visualized stomach acid movement up the esophagus. Severe cardiac (ST segment elevation), respiratory (intermittent apnea) and brain activity (EEG narrowing due to hypoxia) changes were observed only after acid reached larynx, which strongly suggested onset of laryngospasm following acid reflux. The complementary information coming from electrophysiology and fast MRI scans provided insight into the mechanism of esophageal reflux, laryngospasm, obstructive apnea, and subsequent sudden death in seizing animals. The results carry clinical significance as it outlines a potential mechanism that may be relevant to SUDEP in humans.


Assuntos
Epilepsia , Morte Súbita Inesperada na Epilepsia , Animais , Morte Súbita/etiologia , Imagem Multimodal , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...