Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Precis Oncol ; 8(1): 70, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485987

RESUMO

At least 40% of human cancers are associated with aberrant ERK pathway activity (ERKp). Inhibitors targeting various effectors within the ERKp have been developed and explored for over two decades. Conversely, a substantial body of evidence suggests that both normal human cells and, notably to a greater extent, cancer cells exhibit susceptibility to hyperactivation of ERKp. However, this vulnerability of cancer cells remains relatively unexplored. In this review, we reexamine the evidence on the selective lethality of highly elevated ERKp activity in human cancer cells of varying backgrounds. We synthesize the insights proposed for harnessing this vulnerability of ERK-associated cancers for therapeutical approaches and contextualize these insights within established pharmacological cancer-targeting models. Moreover, we compile the intriguing preclinical findings of ERK pathway agonism in diverse cancer models. Lastly, we present a conceptual framework for target discovery regarding ERKp agonism, emphasizing the utilization of mutual exclusivity among oncogenes to develop novel targeted therapies for precision oncology.

2.
Cell Rep ; 42(4): 112332, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37002921

RESUMO

The metabolic plasticity of mitochondria ensures cell development, differentiation, and survival. The peptidase OMA1 regulates mitochondrial morphology via OPA1 and stress signaling via DELE1 and orchestrates tumorigenesis and cell survival in a cell- and tissue-specific manner. Here, we use unbiased systems-based approaches to show that OMA1-dependent cell survival depends on metabolic cues. A metabolism-focused CRISPR screen combined with an integrated analysis of human gene expression data found that OMA1 protects against DNA damage. Nucleotide deficiencies induced by chemotherapeutic agents promote p53-dependent apoptosis of cells lacking OMA1. The protective effect of OMA1 does not depend on OMA1 activation or OMA1-mediated OPA1 and DELE1 processing. OMA1-deficient cells show reduced glycolysis and accumulate oxidative phosphorylation (OXPHOS) proteins upon DNA damage. OXPHOS inhibition restores glycolysis and confers resistance against DNA damage. Thus, OMA1 dictates the balance between cell death and survival through the control of glucose metabolism, shedding light on its role in cancerogenesis.


Assuntos
Metaloendopeptidases , Peptídeo Hidrolases , Humanos , DNA/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Peptídeo Hidrolases/metabolismo
3.
CRISPR J ; 3(3): 211-222, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-33054419

RESUMO

Functional genomic screening with CRISPR has provided a powerful and precise new way to interrogate the phenotypic consequences of gene manipulation in high-throughput, unbiased analyses. However, some experimental paradigms prove especially challenging and require carefully and appropriately adapted screening approaches. In particular, negative selection (or sensitivity) screening, often the most experimentally desirable modality of screening, has remained a challenge in drug discovery. Here we assess whether our new, modular genome-wide pooled CRISPR library can improve negative selection CRISPR screening and add utility throughout the drug development pipeline. Our pooled library is split into three parts, allowing it to be scaled to accommodate the experimental challenges encountered during drug development, such as target identification using unlimited cell numbers compared with target identification studies for cell populations where cell numbers are limiting. To test our new library, we chose to look for drug-gene interactions using a well-described small molecule inhibitor targeting poly(ADP-ribose) polymerase 1 (PARP1), and in particular to identify genes which sensitise cells to this drug. We simulate hit identification and performance using each library partition and support these findings through orthogonal drug combination cell panel screening. We also compare our data with a recently published CRISPR sensitivity dataset obtained using the same PARP1 inhibitor. Overall, our data indicate that generating a comprehensive CRISPR knockout screening library where the number of guides can be scaled to suit the biological question being addressed allows a library to have multiple uses throughout the drug development pipeline, and that initial validation of hits can be achieved through high-throughput cell panels screens where clinical grade chemical or biological matter exist.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Desenvolvimento de Medicamentos , Biblioteca Gênica , Proteínas de Ligação a DNA , Técnicas de Inativação de Genes , Células HT29 , Ensaios de Triagem em Larga Escala , Humanos , Preparações Farmacêuticas , RNA Guia de Cinetoplastídeos/genética
4.
SLAS Discov ; 25(3): 233-240, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31658850

RESUMO

The discovery of CRISPR-Cas9 systems has fueled a rapid expansion of gene editing adoption and has impacted pharmaceutical and biotechnology research substantially. Here, gene editing is used at an industrial scale to identify and validate new biological targets for precision medicines, with functional genomic screening having an increasingly important role. Functional genomic strategies provide a crucial link between observed biological phenomena and the genes that influence and drive those phenomena. Although such studies are not new, the use of CRISPR-Cas9 systems in this arena is providing more robust datasets for target identification and validation. CRISPR-based screening approaches are also useful later in the drug development pipeline for understanding drug resistance and sensitivity ahead of entering clinical trials. This review examines the developing landscape for CRISPR screening technologies within the pharmaceutical industry and explores the next steps for this constantly evolving screening platform.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Humanos
5.
Sci Rep ; 7(1): 17693, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29255251

RESUMO

Pooled CRISPR-Cas9 knock out screens provide a valuable addition to the methods available for novel drug target identification and validation. However, where gene editing is targeted to amplified loci, the resulting multiple DNA cleavage events can be a cause of false positive hit identification. The generation of nuclease deficient versions of Cas9 has enabled the development of two additional techniques - CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) - that enable the repression or overexpression, respectively, of target genes. Here we report the first direct combination of all three approaches (CRISPRko, CRISPRi and CRISPRa) in the context of genome-wide screens to identify components that influence resistance and sensitivity to the BRAF inhibitor, vemurafenib. The pairing of both loss- and gain-of-function datasets reveals complex gene networks which control drug response and illustrates how such data can add substantial confidence to target identification and validation analyses.


Assuntos
Resistência a Medicamentos/genética , Técnicas de Inativação de Genes/métodos , Redes Reguladoras de Genes/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Clivagem do DNA , Avaliação Pré-Clínica de Medicamentos/métodos , Endonucleases/genética , Edição de Genes/métodos , Regulação da Expressão Gênica/genética , Genoma/genética , Humanos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Vemurafenib/farmacologia
6.
Sci Rep ; 6: 31782, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27545104

RESUMO

Components of the type II CRISPR-Cas complex in bacteria have been used successfully in eukaryotic cells to facilitate rapid and accurate cell line engineering, animal model generation and functional genomic screens. Such developments are providing new opportunities for drug target identification and validation, particularly with the application of pooled genetic screening. As CRISPR-Cas is a relatively new genetic screening tool, it is important to assess its functionality in a number of different cell lines and to analyse potential improvements that might increase the sensitivity of a given screen. To examine critical aspects of screening quality, we constructed ultra-complex libraries containing sgRNA sequences targeting a collection of essential genes. We examined the performance of screening in both haploid and hypotriploid cell lines, using two alternative guide design algorithms and two tracrRNA variants in a time-resolved analysis. Our data indicate that a simple adaptation of the tracrRNA substantially improves the robustness of guide loss during a screen. This modification minimises the requirement for high numbers of sgRNAs targeting each gene, increasing hit scoring and creating a powerful new platform for successful screening.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Marcação de Genes/métodos , Engenharia Genética/métodos , Testes Genéticos/métodos , Sequência de Bases , Linhagem Celular Tumoral , Células HEK293 , Células HL-60 , Humanos , RNA Guia de Cinetoplastídeos/genética , Reprodutibilidade dos Testes
7.
Mol Syst Biol ; 9: 696, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24104479

RESUMO

Improved efforts are necessary to define the functional product of cancer mutations currently being revealed through large-scale sequencing efforts. Using genome-scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co-culture competition assays to generate a high-confidence genetic interaction network of differentially essential or differential essentiality (DiE) genes. The network uncovered examples of conserved genetic interactions, densely connected functional modules derived from comparative genomics with model systems data, functions for uncharacterized genes in the human genome and targetable vulnerabilities. Finally, we demonstrate a general applicability of DiE gene signatures in determining genetic dependencies of other non-isogenic cancer cell lines. For example, the PTEN(-/-) DiE genes reveal a signature that can preferentially classify PTEN-dependent genotypes across a series of non-isogenic cell lines derived from the breast, pancreas and ovarian cancers. Our reference network suggests that many cancer vulnerabilities remain to be discovered through systematic derivation of a network of differentially essential genes in an isogenic cancer cell model.


Assuntos
Neoplasias da Mama/genética , Epistasia Genética , Genes Essenciais , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , PTEN Fosfo-Hidrolase/genética , Neoplasias Pancreáticas/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Redes Reguladoras de Genes , Genoma Humano , Humanos , Mutação , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , PTEN Fosfo-Hidrolase/deficiência , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
8.
Curr Biol ; 23(14): 1360-6, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23810536

RESUMO

Centrosomes organize microtubule (MT) arrays and are comprised of centrioles surrounded by ordered pericentriolar proteins. Centrioles are barrel-shaped structures composed of MTs, and as basal bodies they template the formation of cilia/flagella. Defects in centriole assembly can lead to ciliopathies and genome instability. The assembly of procentrioles requires a set of conserved proteins. It is initiated at the G1-to-S transition by PLK4 and CEP152, which help recruit SASS6 and STIL to the vicinity of the mother centriole to organize the cartwheel. Subsequently, CPAP promotes centriolar MT assembly and elongation in G2. While centriole integrity is maintained by CEP135 and POC1 through MT stabilization, centriole elongation requires POC5 and is restricted by CP110 and CEP97. How strict control of centriole length is achieved remains unclear. Here, we show that CEP120 and SPICE1 are required to localize CEP135 (but not SASS6, STIL, or CPAP) to procentrioles. CEP120 associates with SPICE1 and CPAP, and depletion of any of these proteins results in short procentrioles. Furthermore, CEP120 or CPAP overexpression results in excessive centriole elongation, a process dependent on CEP120, SPICE1, and CPAP. Our findings identify a shared function for these proteins in centriole length control.


Assuntos
Proteínas de Ciclo Celular/genética , Centríolos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Centríolos/ultraestrutura , Células HeLa , Humanos , Microscopia Imunoeletrônica , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/ultraestrutura
9.
Nat Cell Biol ; 14(11): 1148-58, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23086237

RESUMO

The centrosome is the main microtubule organization centre of animal cells. It is composed of a centriole pair surrounded by pericentriolar material (PCM). Traditionally described as amorphous, the architecture of the PCM is not known, although its intricate mode of assembly alludes to the presence of a functional, hierarchical structure. Here we used subdiffraction imaging to reveal organizational features of the PCM. Interphase PCM components adopt a concentric toroidal distribution of discrete diameter around centrioles. Positional mapping of multiple non-overlapping epitopes revealed that pericentrin (PCNT) is an elongated molecule extending away from the centriole. We find that PCM components occupy separable spatial domains within mitotic PCM that are maintained in the absence of microtubule nucleation complexes and further implicate PCNT and CDK5RAP2 in the organization and assembly of PCM. Globally, this work highlights the role of higher-order PCM organization in the regulation of centrosome assembly and function.


Assuntos
Centrossomo/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Animais , Centríolos/metabolismo , Humanos , Microtúbulos/metabolismo , Mitose/fisiologia
10.
Science ; 328(5978): 593-9, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20360068

RESUMO

Chromosome segregation and cell division are essential, highly ordered processes that depend on numerous protein complexes. Results from recent RNA interference screens indicate that the identity and composition of these protein complexes is incompletely understood. Using gene tagging on bacterial artificial chromosomes, protein localization, and tandem-affinity purification-mass spectrometry, the MitoCheck consortium has analyzed about 100 human protein complexes, many of which had not or had only incompletely been characterized. This work has led to the discovery of previously unknown, evolutionarily conserved subunits of the anaphase-promoting complex and the gamma-tubulin ring complex--large complexes that are essential for spindle assembly and chromosome segregation. The approaches we describe here are generally applicable to high-throughput follow-up analyses of phenotypic screens in mammalian cells.


Assuntos
Segregação de Cromossomos , Mitose , Complexos Multiproteicos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Centrossomo/metabolismo , Cromossomos Artificiais Bacterianos , Bases de Dados Genéticas , Genômica , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Fases de Leitura Aberta , Ligação Proteica , Mapeamento de Interação de Proteínas , Subunidades Proteicas/metabolismo , Interferência de RNA
11.
Curr Biol ; 19(10): 816-26, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19427217

RESUMO

BACKGROUND: The assembly of a robust microtubule-based mitotic spindle is a prerequisite for the accurate segregation of chromosomes to progeny. Spindle assembly relies on the concerted action of centrosomes, spindle microtubules, molecular motors, and nonmotor spindle proteins. RESULTS: Here we use an RNA-interference screen of the human centrosome proteome to identify novel regulators of spindle assembly. One such regulator is HAUS, an 8-subunit protein complex that shares homology to Drosophila Augmin. HAUS localizes to interphase centrosomes and to mitotic spindle microtubules, and its disruption induces microtubule-dependent fragmentation of centrosomes along with an increase in centrosome size. HAUS disruption results in the destabilization of kinetochore microtubules and the eventual formation of multipolar spindles. These severe mitotic defects are alleviated by codepletion of NuMA, indicating that both factors regulate opposing activities. HAUS disruption alters NuMA localization, suggesting that mislocalized NuMA activity contributes to the spindle and centrosome defects observed. CONCLUSION: The human Augmin complex (HAUS) is a critical and evolutionary conserved multisubunit protein complex that regulates centrosome and spindle integrity.


Assuntos
Centrossomo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Subunidades Proteicas/metabolismo , Fuso Acromático/metabolismo , Animais , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Proteínas de Ciclo Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
12.
Curr Biol ; 18(2): 136-41, 2008 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-18207742

RESUMO

Centrosomes are the major microtubule-organizing centers of mammalian cells. They are composed of a centriole pair and surrounding microtubule-nucleating material termed pericentriolar material (PCM). Bipolar mitotic spindle assembly relies on two intertwined processes: centriole duplication and centrosome maturation. In the first process, the single interphase centrosome duplicates in a tightly regulated manner so that two centrosomes are present in mitosis. In the second process, the two centrosomes increase in size and microtubule nucleation capacity through PCM recruitment, a process referred to as centrosome maturation. Failure to properly orchestrate centrosome duplication and maturation is inevitably linked to spindle defects, which can result in aneuploidy and promote cancer progression. It has been proposed that centriole assembly during duplication relies on both PCM and centriole proteins, raising the possibility that centriole duplication depends on PCM recruitment. In support of this model, C. elegans SPD-2 and mammalian NEDD-1 (GCP-WD) are key regulators of both these processes. SPD-2 protein sequence homologs have been identified in flies, mice, and humans, but their roles in centrosome biogenesis until now have remained unclear. Here, we show that Cep192, the human homolog of C. elegans and D. melanogaster SPD-2, is a major regulator of PCM recruitment, centrosome maturation, and centriole duplication in mammalian cells. We propose a model in which Cep192 and Pericentrin are mutually dependent for their localization to mitotic centrosomes during centrosome maturation. Both proteins are then required for NEDD-1 recruitment and the subsequent assembly of gamma-TuRCs and other factors into fully functional centrosomes.


Assuntos
Centrossomo/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Mitose/fisiologia , Antígenos/metabolismo , Proteínas de Caenorhabditis elegans , Centrossomo/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
13.
Nat Cell Biol ; 9(12): 1401-12, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17994010

RESUMO

Cell division is fundamental for all organisms. Here we report a genome-scale RNA-mediated interference screen in HeLa cells designed to identify human genes that are important for cell division. We have used a library of endoribonuclease-prepared short interfering RNAs for gene silencing and have used DNA content analysis to identify genes that induced cell cycle arrest or altered ploidy on silencing. Validation and secondary assays were performed to generate a nine-parameter loss-of-function phenoprint for each of the genes. These phenotypic signatures allowed the assignment of genes to specific functional classes by combining hierarchical clustering, cross-species analysis and proteomic data mining. We highlight the richness of our dataset by ascribing novel functions to genes in mitosis and cytokinesis. In particular, we identify two evolutionarily conserved transcriptional regulatory networks that govern cytokinesis. Our work provides an experimental framework from which the systematic analysis of novel genes necessary for cell division in human cells can begin.


Assuntos
Divisão Celular/fisiologia , Genoma Humano , Interferência de RNA , Perfilação da Expressão Gênica , Células HeLa , Humanos , RNA Interferente Pequeno/metabolismo
14.
EMBO Rep ; 8(5): 490-6, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17431409

RESUMO

The hydrophobic patch of cyclins interacts with cyclin-dependent kinase (Cdk) substrates and p27-type Cdk inhibitors. Although this interaction is assumed to contribute to the specificity of different Cdk-Cyclin complexes, its role in specific steps of the cell cycle has not been demonstrated. Here, we show that in Drosophila the mitotic inhibitor Frühstart (Frs) binds specifically and with high affinity to the hydrophobic patch of cyclins. In contrast to p27-type Cdk inhibitors, Frs does not form a stable interaction with the catalytic centre of Cdk and allows phosphorylation of generic model substrates, such as histone H1. Consistent with a 2.5 times stronger binding to CycA than to CycE in vitro, ectopic expression of frs induces endocycles, in a manner similar to that reported previously for downregulation of CycA or Cdk1. We propose that binding of Frs to cyclins blocks the hydrophobic patch to interfere with Cdk1 substrate recognition.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Animais , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/química , Drosophila/citologia , Interações Hidrofóbicas e Hidrofílicas , Mitose , Fase S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...