Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Dis Model Mech ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775430

RESUMO

Hyperinflammatory disease is associated with an aberrant immune response resulting in cytokine storm. One such instance of hyperinflammatory disease is known as macrophage activation syndrome (MAS). The pathology of MAS can be characterised by significantly elevated serum levels of interleukin (IL)-18 and interferon (IFN)-γ. Given the role for IL-18 in MAS, we sought to establish the role of inflammasomes in the disease process. Using a murine model of CpG-DNA induced MAS, we discovered that the expression of the NLRP3 inflammasome was increased and correlated with IL-18 production. Inhibition of the NLRP3 inflammasome, or downstream caspase-1, prevented MAS-mediated upregulation of plasma IL-18 but interestingly did not alleviate key features of hyperinflammatory disease including hyperferritinaemia and splenomegaly. Furthermore IL-1 receptor blockade with IL-1Ra did not prevent the development of CpG-induced MAS, despite being clinically effective in the treatment of MAS. These data demonstrate that in the development of MAS, the NLRP3 inflammasome was essential for the elevation in plasma IL-18, a key cytokine in clinical cases of MAS, but was not a driving factor in the pathogenesis of CpG-induced MAS.

2.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464243

RESUMO

Hyperinflammatory disease is associated with an aberrant immune response resulting in cytokine storm. One such instance of hyperinflammatory disease is known as macrophage activation syndrome (MAS). The pathology of MAS can be characterised by significantly elevated serum levels of interleukin (IL)-18 and interferon (IFN)-γ. Given the role for IL-18 in MAS, we sought to establish the role of inflammasomes in the disease process. Using a murine model of CpG-DNA induced MAS, we discovered that the expression of the NLRP3 inflammasome was increased and correlated with IL-18 production. Inhibition of the NLRP3 inflammasome, or downstream caspase-1, prevented MAS-mediated upregulation of plasma IL-18 but interestingly did not alleviate key features of hyperinflammatory disease including hyperferritinaemia and splenomegaly. Furthermore IL-1 receptor blockade with IL-1Ra did not prevent the development of CpG-induced MAS, despite being clinically effective in the treatment of MAS. These data demonstrate that in the development of MAS, the NLRP3 inflammasome was essential for the elevation in plasma IL-18, a key cytokine in clinical cases of MAS, but was not a driving factor in the pathogenesis of CpG-induced MAS.

3.
iScience ; 27(2): 108968, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38327788

RESUMO

Excessive or aberrant NLRP3 inflammasome activation has been implicated in the progression and initiation of many inflammatory conditions; however, currently no NLRP3 inflammasome inhibitors have been approved for therapeutic use in the clinic. Here we have identified that the natural product brazilin effectively inhibits both priming and activation of the NLRP3 inflammasome in cultured murine macrophages, a human iPSC microglial cell line and in a mouse model of acute peritoneal inflammation. Through computational modeling, we predict that brazilin can adopt a favorable binding pose within a site of the NLRP3 protein which is essential for its conformational activation. Our results not only encourage further evaluation of brazilin as a therapeutic agent for NLRP3-related inflammatory diseases, but also introduce this small-molecule as a promising scaffold structure for the development of derivative NLRP3 inhibitor compounds.

4.
Cereb Circ Cogn Behav ; 5: 100189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941765

RESUMO

Although dementia research has been dominated by Alzheimer's disease (AD), most dementia in older people is now recognised to be due to mixed pathologies, usually combining vascular and AD brain pathology. Vascular cognitive impairment (VCI), which encompasses vascular dementia (VaD) is the second most common type of dementia. Models of VCI have been delayed by limited understanding of the underlying aetiology and pathogenesis. This review by a multidisciplinary, diverse (in terms of sex, geography and career stage), cross-institute team provides a perspective on limitations to current VCI models and recommendations for improving translation and reproducibility. We discuss reproducibility, clinical features of VCI and corresponding assessments in models, human pathology, bioinformatics approaches, and data sharing. We offer recommendations for future research, particularly focusing on small vessel disease as a main underpinning disorder.

5.
Transl Stroke Res ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853252

RESUMO

Intracerebral haemorrhage (ICH) is the deadliest form of stroke, but current treatment options are limited, meaning ICH survivors are often left with life-changing disabilities. The significant unmet clinical need and socioeconomic burden of ICH mean novel regenerative medicine approaches are gaining interest. To facilitate the regeneration of the ICH lesion, injectable biomimetic hydrogels are proposed as both scaffolds for endogenous repair and delivery platforms for pro-regenerative therapies. In this paper, the objective was to explore whether injection of a novel self-assembling peptide hydrogel (SAPH) Alpha2 was feasible, safe and could stimulate brain tissue regeneration, in a collagenase-induced ICH model in rats. Alpha2 was administered intracerebrally at 7 days post ICH and functional outcome measures, histological markers of damage and repair and RNA-sequencing were investigated for up to 8 weeks. The hydrogel Alpha2 was safe, well-tolerated and was retained in the lesion for several weeks, where it allowed infiltration of host cells. The hydrogel had a largely neutral effect on functional outcomes and expression of angiogenic and neurogenic markers but led to increased numbers of proliferating cells. RNAseq and pathway analysis showed that ICH altered genes related to inflammatory and phagocytic pathways, and these changes were also observed after administration of hydrogel. Overall, the results show that the novel hydrogel was safe when injected intracerebrally and had no negative effects on functional outcomes but increased cell proliferation. To elicit a regenerative effect, future studies could use a functionalised hydrogel or combine it with an adjunct therapy.

6.
Fluids Barriers CNS ; 20(1): 25, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013549

RESUMO

Blood-brain barrier (BBB) dysfunction occurs in many brain diseases, and there is increasing evidence to suggest that it is an early process in dementia which may be exacerbated by peripheral infection. Filter-exchange imaging (FEXI) is an MRI technique for measuring trans-membrane water exchange. FEXI data is typically analysed using the apparent exchange rate (AXR) model, yielding estimates of the AXR. Crusher gradients are commonly used to remove unwanted coherence pathways arising from longitudinal storage pulses during the mixing period. We first demonstrate that when using thin slices, as is needed for imaging the rodent brain, crusher gradients result in underestimation of the AXR. To address this, we propose an extended crusher-compensated exchange rate (CCXR) model to account for diffusion-weighting introduced by the crusher gradients, which is able to recover ground truth values of BBB water exchange (kin) in simulated data. When applied to the rat brain, kin estimates obtained using the CCXR model were 3.10 s-1 and 3.49 s-1 compared to AXR estimates of 1.24 s-1 and 0.49 s-1 for slice thicknesses of 4.0 mm and 2.5 mm respectively. We then validated our approach using a clinically relevant Streptococcus pneumoniae lung infection. We observed a significant 70 ± 10% increase in BBB water exchange in rats during active infection (kin = 3.78 ± 0.42 s-1) compared to before infection (kin = 2.72 ± 0.30 s-1; p = 0.02). The BBB water exchange rate during infection was associated with higher levels of plasma von Willebrand factor (VWF), a marker of acute vascular inflammation. We also observed 42% higher expression of perivascular aquaporin-4 (AQP4) in infected animals compared to non-infected controls, while levels of tight junction proteins remain consistent between groups. In summary, we propose a modelling approach for FEXI data which removes the bias in estimated water-exchange rates associated with the use of crusher gradients. Using this approach, we demonstrate the impact of peripheral infection on BBB water exchange, which appears to be mediated by endothelial dysfunction and associated with an increase in perivascular AQP4.


Assuntos
Barreira Hematoencefálica , Água , Ratos , Animais , Barreira Hematoencefálica/metabolismo , Água/metabolismo , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Aquaporina 4/metabolismo , Pulmão/metabolismo
7.
Neuropharmacology ; 224: 109330, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375694

RESUMO

Neuroinflammation, specifically the NLRP3 inflammasome cascade, is a common underlying pathological feature of many neurodegenerative diseases. Evidence suggests that NLRP3 activation involves changes in intracellular K+. Nuclear Enriched Transcript Sort Sequencing (NETSseq), which allows for deep sequencing of purified cell types from human post-mortem brain tissue, demonstrated a highly specific expression of the tandem pore domain halothane-inhibited K+ channel 1 (THIK-1) in microglia compared to other glial and neuronal cell types in the human brain. NETSseq also showed a significant increase of THIK-1 in microglia isolated from cortical regions of brains with Alzheimer's disease (AD) relative to control donors. Herein, we report the discovery and pharmacological characterisation of C101248, the first selective small-molecule inhibitor of THIK-1. C101248 showed a concentration-dependent inhibition of both mouse and human THIK-1 (IC50: ∼50 nM) and was inactive against K2P family members TREK-1 and TWIK-2, and Kv2.1. Whole-cell patch-clamp recordings of microglia from mouse hippocampal slices showed that C101248 potently blocked both tonic and ATP-evoked THIK-1 K+ currents. Notably, C101248 had no effect on other constitutively active resting conductance in slices from THIK-1-depleted mice. In isolated microglia, C101248 prevented NLRP3-dependent release of IL-1ß, an effect not seen in THIK-1-depleted microglia. In conclusion, we demonstrated that inhibiting THIK-1 (a microglia specific gene that is upregulated in brains from donors with AD) using a novel selective modulator attenuates the NLRP3-dependent release of IL-1ß from microglia, which suggests that this channel may be a potential therapeutic target for the modulation of neuroinflammation in AD.


Assuntos
Doença de Alzheimer , Inflamassomos , Canais de Potássio de Domínios Poros em Tandem , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Inflamassomos/metabolismo , Microglia , Doenças Neuroinflamatórias , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores
8.
Glia ; 70(7): 1301-1316, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35353387

RESUMO

The NLRP3 (NLR family, pyrin domain containing 3) inflammasome is a multi-protein complex responsible for the activation of caspase-1 and the subsequent cleavage and activation of the potent proinflammatory cytokines IL-1ß and IL-18, and pyroptotic cell death. NLRP3 is implicated as a driver of inflammation in a range of disorders including neurodegenerative diseases, type 2 diabetes, and atherosclerosis. A commonly reported mechanism contributing to NLRP3 inflammasome activation is potassium ion (K+ ) efflux across the plasma membrane. Identification of K+ channels involved in NLRP3 activation remains incomplete. Here, we investigated the role of the K+ channel THIK-1 in NLRP3 activation. Both pharmacological inhibitors and cells from THIK-1 knockout (KO) mice were used to assess THIK-1 contribution to macrophage NLRP3 activation in vitro. Pharmacological inhibition of THIK-1 inhibited caspase-1 activation and IL-1ß release from mouse bone-marrow-derived macrophages (BMDMs), mixed glia, and microglia in response to NLRP3 agonists. Similarly, BMDMs and microglia from THIK-1 KO mice had reduced NLRP3-dependent IL-1ß release in response to P2X7 receptor activation with ATP. Overall, these data suggest that THIK-1 is a regulator of NLRP3 inflammasome activation in response to ATP and identify THIK-1 as a potential therapeutic target for inflammatory disease.


Assuntos
Diabetes Mellitus Tipo 2 , Inflamassomos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Caspase 1/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Potássio/metabolismo , Canais de Potássio
9.
Glia ; 70(6): 1068-1083, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35150591

RESUMO

Microglia, resident brain immune cells, are critical in orchestrating responses to central nervous system (CNS) injury. Many microglial functions, such as phagocytosis, motility and chemotaxis, are suggested to rely on chloride channels, including the volume-regulated anion channel (VRAC), but studies to date have relied on the use of pharmacological tools with limited specificity. VRAC has also been proposed as a drug target for acute CNS injury, and its role in microglial function is of considerable interest for developing CNS therapeutics. This study aimed to definitively confirm the contribution of VRAC in microglia function by using conditional LRRC8A-knockout mice, which lacked the essential VRAC subunit LRRC8A in microglia. We demonstrated that while VRAC contributed to cell volume regulation, it had no effect on phagocytic activity, cell migration or P2YR12-dependent chemotaxis. Moreover, loss of microglial VRAC did not affect microglial morphology or the extent of ischemic damage following stroke. We conclude that VRAC does not critically regulate microglial responses to brain injury and could be targetable in other CNS cell types (e.g., astrocytes) without impeding microglial function. Our results also demonstrate a role for VRAC in cell volume regulation but show that VRAC is not involved in several major cellular functions that it was previously thought to regulate, and point to other, alternative mechanisms of chloride transport in innate immunity.


Assuntos
Microglia , Acidente Vascular Cerebral , Animais , Tamanho Celular , Transporte de Íons , Proteínas de Membrana/metabolismo , Camundongos , Microglia/metabolismo
10.
Discov Immunol ; 1(1): kyac005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38566906

RESUMO

Inflammasomes and the interleukin (IL)-1 family of cytokines are key mediators of both inflammation and immunothrombosis. Inflammasomes are responsible for the release of the pro-inflammatory cytokines IL-1ß and IL-18, as well as releasing tissue factor (TF), a pivotal initiator of the extrinsic coagulation cascade. Uncontrolled production of inflammatory cytokines results in what is known as a "cytokine storm" leading to hyperinflammatory disease. Cytokine storms can complicate a variety of diseases and results in hypercytokinemia, coagulopathies, tissue damage, multiorgan failure, and death. Patients presenting with cytokine storm syndromes have a high mortality rate, driven in part by disseminated intravascular coagulation (DIC). While our knowledge on the factors propagating cytokine storms is increasing, how cytokine storm influences DIC remains unknown, and therefore treatments for diseases, where these aspects are a key feature are limited, with most targeting specific cytokines. Currently, no therapies target the immunothrombosis aspect of hyperinflammatory syndromes. Here we discuss how targeting the inflammasome and pyroptosis may be a novel therapeutic strategy for the treatment of hyperinflammation and its associated pathologies.

11.
Adv Healthc Mater ; 10(16): e2100455, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34197036

RESUMO

Intracerebral hemorrhage (ICH) is a deadly and debilitating type of stroke, caused by the rupture of cerebral blood vessels. To date, there are no restorative interventions approved for use in ICH patients, highlighting a critical unmet need. ICH shares some pathological features with other acute brain injuries such as ischemic stroke (IS) and traumatic brain injury (TBI), including the loss of brain tissue, disruption of the blood-brain barrier, and activation of a potent inflammatory response. New biomaterials such as hydrogels have been recently investigated for their therapeutic benefit in both experimental IS and TBI, owing to their provision of architectural support for damaged brain tissue and ability to deliver cellular and molecular therapies. Conversely, research on the use of hydrogels for ICH therapy is still in its infancy, with very few published reports investigating their therapeutic potential. Here, the published use of hydrogels in experimental ICH is commented upon and how approaches reported in the IS and TBI fields may be applied to ICH research to inform the design of future therapies is described. Unique aspects of ICH that are distinct from IS and TBI that should be considered when translating biomaterial-based therapies between disease models are also highlighted.


Assuntos
Lesões Encefálicas Traumáticas , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Isquemia Encefálica/terapia , Hemorragia Cerebral/terapia , Humanos , Hidrogéis , Acidente Vascular Cerebral/terapia
13.
ACS Nano ; 15(4): 7357-7369, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33730479

RESUMO

Blood-circulating biomarkers have the potential to detect Alzheimer's disease (AD) pathology before clinical symptoms emerge and to improve the outcomes of clinical trials for disease-modifying therapies. Despite recent advances in understanding concomitant systemic abnormalities, there are currently no validated or clinically used blood-based biomarkers for AD. The extremely low concentration of neurodegeneration-associated proteins in blood necessitates the development of analytical platforms to address the "signal-to-noise" issue and to allow an in-depth analysis of the plasma proteome. Here, we aimed to discover and longitudinally track alterations of the blood proteome in a transgenic mouse model of AD, using a nanoparticle-based proteomics enrichment approach. We employed blood-circulating, lipid-based nanoparticles to extract, analyze and monitor AD-specific protein signatures and to systemically uncover molecular pathways associated with AD progression. Our data revealed the existence of multiple proteomic signals in blood, indicative of the asymptomatic stages of AD. Comprehensive analysis of the nanoparticle-recovered blood proteome by label-free liquid chromatography-tandem mass spectrometry resulted in the discovery of AD-monitoring signatures that could discriminate the asymptomatic phase from amyloidopathy and cognitive deterioration. While the majority of differentially abundant plasma proteins were found to be upregulated at the initial asymptomatic stages, the abundance of these molecules was significantly reduced as a result of amyloidosis, suggesting a disease-stage-dependent fluctuation of the AD-specific blood proteome. The potential use of the proposed nano-omics approach to uncover information in the blood that is directly associated with brain neurodegeneration was further exemplified by the recovery of focal adhesion cascade proteins. We herein propose the integration of nanotechnology with already existing proteomic analytical tools in order to enrich the identification of blood-circulating signals of neurodegeneration, reinvigorating the potential clinical utility of the blood proteome at predicting the onset and kinetics of the AD progression trajectory.


Assuntos
Doença de Alzheimer , Nanopartículas , Doença de Alzheimer/diagnóstico , Animais , Biomarcadores , Proteínas Sanguíneas , Camundongos , Proteoma , Proteômica
14.
J Neurosci ; 41(13): 3025-3038, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33597269

RESUMO

Alzheimer's disease is a devastating neurodegenerative disease with a dramatically increasing prevalence and no disease-modifying treatment. Inflammatory lifestyle factors increase the risk of developing Alzheimer's disease. Zinc deficiency is the most prevalent malnutrition in the world and may be a risk factor for Alzheimer's disease potentially through enhanced inflammation, although evidence for this is limited. Here we provide epidemiological evidence suggesting that zinc supplementation was associated with reduced risk and slower cognitive decline, in people with Alzheimer's disease and mild cognitive impairment. Using the APP/PS1 mouse model of Alzheimer's disease fed a control (35 mg/kg zinc) or diet deficient in zinc (3 mg/kg zinc), we determined that zinc deficiency accelerated Alzheimer's-like memory deficits without modifying amyloid ß plaque burden in the brains of male mice. The NLRP3-inflammasome complex is one of the most important regulators of inflammation, and we show here that zinc deficiency in immune cells, including microglia, potentiated NLRP3 responses to inflammatory stimuli in vitro, including amyloid oligomers, while zinc supplementation inhibited NLRP3 activation. APP/PS1 mice deficient in NLRP3 were protected against the accelerated cognitive decline with zinc deficiency. Collectively, this research suggests that zinc status is linked to inflammatory reactivity and may be modified in people to reduce the risk and slow the progression of Alzheimer's disease.SIGNIFICANCE STATEMENT Alzheimer's disease is a common condition mostly affecting the elderly. Zinc deficiency is also a global problem, especially in the elderly and also in people with Alzheimer's disease. Zinc deficiency contributes to many clinical disorders, including immune dysfunction. Inflammation is known to contribute to the risk and progression of Alzheimer's disease; thus, we hypothesized that zinc status would affect Alzheimer's disease progression. Here we show that zinc supplementation reduced the prevalence and symptomatic decline in people with Alzheimer's disease. In an animal model of Alzheimer's disease, zinc deficiency worsened cognitive decline because of an enhancement in NLRP3-driven inflammation. Overall, our data suggest that zinc status affects Alzheimer's disease progression, and that zinc supplementation could slow the rate of cognitive decline.


Assuntos
Doença de Alzheimer/sangue , Disfunção Cognitiva/sangue , Progressão da Doença , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Zinco/sangue , Adulto , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/dietoterapia , Animais , Células Cultivadas , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/dietoterapia , Suplementos Nutricionais , Feminino , Seguimentos , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Zinco/administração & dosagem , Zinco/deficiência
15.
Immunology ; 162(1): 84-91, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32954500

RESUMO

Excessive and dysregulated inflammation is known to contribute to disease progression. HSP90 is an intracellular chaperone known to regulate inflammatory processes including the NLRP3 inflammasome and secretion of the pro-inflammatory cytokine interleukin(IL)-1ß. Here, primarily using an in vitro inflammasome ASC speck assay, and an in vivo model of murine peritonitis, we tested the utility of HSP90 inhibitors as anti-inflammatory molecules. We report that the HSP90 inhibitor EC144 effectively inhibited inflammatory processes including priming and activation of NLRP3 in vitro and in vivo. A specific inhibitor of the ß HSP90 isoform was ineffective suggesting the importance of the α isoform in inflammatory signalling. EC144 inhibited IL-1ß and IL-6 in vivo when administered orally, and was brain-penetrant. These data suggest that HSP90 inhibitors may be useful for targeting inflammation in diverse diseases that are worsened by the presence of inflammation.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Citocinas/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peritonite/metabolismo , Isoformas de Proteínas/metabolismo , Transdução de Sinais/fisiologia
16.
Brain Commun ; 2(2): fcaa109, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134914

RESUMO

Epidemiological evidence suggests non-steroidal anti-inflammatory drugs reduce the risk of Alzheimer's disease. However, clinical trials have found no evidence of non-steroidal anti-inflammatory drug efficacy. This incongruence may be due to the wrong non-steroidal anti-inflammatory drugs being tested in robust clinical trials or the epidemiological findings being caused by confounding factors. Therefore, this study used logistic regression and the innovative approach of negative binomial generalized linear mixed modelling to investigate both prevalence and cognitive decline, respectively, in the Alzheimer's Disease Neuroimaging dataset for each commonly used non-steroidal anti-inflammatory drug and paracetamol. Use of most non-steroidal anti-inflammatories was associated with reduced Alzheimer's disease prevalence yet no effect on cognitive decline was observed. Paracetamol had a similar effect on prevalence to these non-steroidal anti-inflammatory drugs suggesting this association is independent of the anti-inflammatory effects and that previous results may be due to spurious associations. Interestingly, diclofenac use was significantly associated with both reduce incidence and slower cognitive decline warranting further research into the potential therapeutic effects of diclofenac in Alzheimer's disease.

18.
BMJ Open Sci ; 4(1): e100013, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35047684

RESUMO

Stroke is a significant cause of mortality and morbidity for which there are limited treatment options. Virtually all drug interventions that have been successful preclinically in experimental stroke have failed to translate to an effective treatment in the clinical setting. In this review, we examine one of the factors likely contributing to this lack of translation, the failure of preclinical studies to consider fully the advanced age and comorbidities (eg, hypertension or diabetes) present in most patients with stroke. Age and comorbidities affect the likelihood of suffering a stroke, disease progression and the response to treatment. Analysing data from preclinical systematic reviews of interventions for ischaemic stroke we show that only 11.4% of studies included an aged or comorbid model, with hypertension being the most frequent. The degree of protection (% reduction in infarct volume) varied depending on the comorbidity and the type of intervention. We consider reasons for the lack of attention to comorbid and aged animals in stroke research and discuss the value of testing a potential therapy in models representing a range of comorbidities that affect patients with stroke. These models can help establish any limits to a treatment's efficacy and inform the design of clinical trials in appropriate patient populations.

19.
BMJ Open Sci ; 4(1): e100047, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35047689

RESUMO

OBJECTIVES: Currently there is a paucity of clinically available regenerative therapies for stroke. Extracellular vesicles (EV) have been investigated for their potential as modulators of regeneration in the poststroke brain. This systematic review and meta-analysis aims to provide a summary of the efficacy of therapeutic EVs in preclinical stroke models, to inform future research in this emerging field. METHODS: Studies were identified by a comprehensive literature search of two online sources and subsequent screening. Studies using lesion volume or neurological score as outcome measures were included. Standardised mean difference (SMD) and 95% CIs were calculated using a restricted maximum likelihood random effects model. Publication bias was assessed with Egger's regression and presented as funnel plots with trim and fill analysis. Subgroup analysis was performed to assess the effects of different study variables. Study quality and risk of bias were assessed using the CAMARADES checklist. RESULTS: A total of 20 publications were included in the systematic review, of which 19 were assessed in the meta-analysis (43 comparisons). Overall, EV interventions improved lesion volume (SMD: -1.95, 95% CI -2.72 to 1.18) and neurological scores (SMD: -1.26, 95% CI -1.64 to 0.87) compared with control groups. Funnel plots were asymmetrical suggesting publication bias, and trim and fill analysis predicted seven missing studies for lesion volume. Subgroup analysis suggested administration at 0-23 hours after stroke was the most effective timepoint for EV treatment. The median score on the CAMARADES checklist was 7 (IQR: 5-8). CONCLUSIONS: EVs may offer a promising new avenue for stroke therapies, as EV-based interventions had positive impacts on lesion volume and neurological score in preclinical stroke models. PROSPERO REGISTRATION NUMBER: CRD42019134925.

20.
Chem Sci ; 11(43): 11720-11728, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34094411

RESUMO

The NLRP3 inflammasome regulates production of the pro-inflammatory cytokines interleukin-1ß (IL-1ß) and IL-18, and contributes to inflammation exacerbating disease. Fenamate non-steroidal anti-inflammatory drugs (NSAIDs) were recently described as NLRP3 inflammasome inhibitors via chloride channel inhibition. Fenamate NSAIDs inhibit cyclooxygenase (COX) enzymes, limiting their potential as therapeutics for NLRP3-associated diseases due to established side effects. The aim here was to develop properties of the fenamates that inhibit NLRP3, and at the same time to reduce COX inhibition. We synthesised a library of analogues, with feedback from in silico COX docking potential, and IL-1ß release inhibitory activity. Through iterative screening and rational chemical design, we established a collection of chloride channel inhibiting active lead molecules with potent activity at the canonical NLRP3 inflammasome and no activity at COX enzymes, but only in response to stimuli that activated NLRP3 by a K+ efflux-dependent mechanism. This study identifies a model for the isolation and removal of unwanted off-target effects, with the enhancement of desired activity, and establishes a new chemical motif for the further development of NLRP3 inflammasome inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...