Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Sci Adv ; 10(6): eadj5661, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335297

RESUMO

Hypoxia-inducible factor pathway genes are linked to adaptation in both human and nonhuman highland species. EPAS1, a notable target of hypoxia adaptation, is associated with relatively lower hemoglobin concentration in Tibetans. We provide evidence for an association between an adaptive EPAS1 variant (rs570553380) and the same phenotype of relatively low hematocrit in Andean highlanders. This Andean-specific missense variant is present at a modest frequency in Andeans and absent in other human populations and vertebrate species except the coelacanth. CRISPR-base-edited human cells with this variant exhibit shifts in hypoxia-regulated gene expression, while metabolomic analyses reveal both genotype and phenotype associations and validation in a lowland population. Although this genocopy of relatively lower hematocrit in Andean highlanders parallels well-replicated findings in Tibetans, it likely involves distinct pathway responses based on a protein-coding versus noncoding variants, respectively. These findings illuminate how unique variants at EPAS1 contribute to the same phenotype in Tibetans and a subset of Andean highlanders despite distinct evolutionary trajectories.


Assuntos
Adaptação Fisiológica , Altitude , Hematócrito , População da América do Sul , Humanos , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , População do Leste Asiático , Hipóxia/genética , Hipóxia/metabolismo , Mutação de Sentido Incorreto/genética , População da América do Sul/genética
2.
Psychol Trauma ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300574

RESUMO

BACKGROUND: Emotional suppression is a clinically significant aspect of emotion regulation with robust associations to psychopathology, including posttraumatic stress disorder (PTSD). Despite the fast-growing body of literature highlighting the role of positive emotion regulation difficulties in the development and maintenance of PTSD, extant work on emotional suppression and PTSD has almost exclusively focused on the role of negative emotions. OBJECTIVE: The present study aimed to advance this literature by examining the associations between PTSD symptom clusters and participants' use of state emotional suppression during a laboratory task designed to elicit negative or positive emotions. METHOD: Participants were 108 community women (Mage = 39.55; 33% Black/African American) currently experiencing intimate partner violence (IPV) by a male partner and using substances. Participants were interviewed using a structured diagnostic assessment for PTSD and reported on state emotional intensity and emotional suppression following idiographic negative or positive emotion inductions. RESULTS: Results of the moderation analyses showed that, when controlling for state emotional intensity, women experiencing clinical levels of PTSD symptom Clusters B (intrusive recollections), D (negative alterations in cognitions and mood), and E (alterations in arousal and reactivity) were significantly more likely to utilize emotional suppression, but only in the context of positive-not negative-emotions. CONCLUSIONS: Findings provide evidence for a link between PTSD and positive emotional suppression among women currently experiencing IPV by a male partner and using substances, highlighting positive emotional suppression as a potential target in PTSD treatment for IPV populations with comorbid substance use concerns. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

3.
Eat Disord ; 32(2): 140-152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37965714

RESUMO

Eating disorders (EDs) are associated with emotion regulation difficulties. However, most studies have examined intrapersonal emotion regulation difficulties and strategies without consideration of interpersonal emotion regulation (IER). Thus, it remains unknown whether intrinsic IER (i.e., how people regulate their emotions through others) is associated with disordered eating. The present study examined whether putatively maladaptive IER strategies such as reassurance seeking and venting were associated with ED cognitions, behaviors, and symptom severity. Additionally, we examined whether IER strategy use varied as a function of probable ED diagnosis. A sample of 181 college students (Mage = 20.01 years, SD = 2.18) from a large northeastern university completed self-report measures of disordered eating, IER strategies, and intrapersonal emotion regulation difficulties. As predicted, reassurance seeking was associated with most ED symptomatology and ED symptom severity except for fasting frequency. Venting was only associated with body dissatisfaction. Associations between reassurance seeking and ED symptom severity and excessive exercise frequency remained significant even after controlling for sex and intrapersonal emotion regulation strategies. Finally, participants with a probable ED diagnosis reported greater reassurance seeking but not venting compared to nonprobable ED cases. These findings highlight the important associations between IER strategy use and disordered eating, namely, reassurance seeking. Additional research is needed to examine the associations between IER strategy use and disordered eating longitudinally.


Emotion regulation difficulties have consistently been associated with eating disorder symptomatology; however, most studies have examined intrapersonal emotion regulation, while ignoring interpersonal emotion regulation. We found that reassurance seeking was differentially associated with eating disorder symptomatology and symptom severity. Even after controlling for sex, intrapersonal emotion regulation strategies, reassurance seeking accounted for variance in symptom severity and excessive exercise frequency.


Assuntos
Insatisfação Corporal , Regulação Emocional , Transtornos da Alimentação e da Ingestão de Alimentos , Humanos , Adulto Jovem , Adulto , Emoções/fisiologia , Autorrelato
4.
Cell ; 186(26): 5690-5704.e20, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38101407

RESUMO

The maturation of genomic surveillance in the past decade has enabled tracking of the emergence and spread of epidemics at an unprecedented level. During the COVID-19 pandemic, for example, genomic data revealed that local epidemics varied considerably in the frequency of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage importation and persistence, likely due to a combination of COVID-19 restrictions and changing connectivity. Here, we show that local COVID-19 epidemics are driven by regional transmission, including across international boundaries, but can become increasingly connected to distant locations following the relaxation of public health interventions. By integrating genomic, mobility, and epidemiological data, we find abundant transmission occurring between both adjacent and distant locations, supported by dynamic mobility patterns. We find that changing connectivity significantly influences local COVID-19 incidence. Our findings demonstrate a complex meaning of "local" when investigating connected epidemics and emphasize the importance of collaborative interventions for pandemic prevention and mitigation.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Genômica , Pandemias/prevenção & controle , Saúde Pública , SARS-CoV-2/genética , Controle de Infecções , Geografia
5.
Front Physiol ; 13: 885295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035495

RESUMO

The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.

6.
Nature ; 609(7925): 101-108, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798029

RESUMO

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing and/or sequencing capacity, which can also introduce biases1-3. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing4,5. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We developed and deployed improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detected emerging variants of concern up to 14 days earlier in wastewater samples, and identified multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Humanos , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Análise de Sequência de RNA , Águas Residuárias/virologia
7.
mSystems ; 7(4): e0010922, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35703436

RESUMO

A promising approach to help students safely return to in person learning is through the application of sentinel cards for accurate high resolution environmental monitoring of SARS-CoV-2 traces indoors. Because SARS-CoV-2 RNA can persist for up to a week on several indoor surface materials, there is a need for increased temporal resolution to determine whether consecutive surface positives arise from new infection events or continue to report past events. Cleaning sentinel cards after sampling would provide the needed resolution but might interfere with assay performance. We tested the effect of three cleaning solutions (BZK wipes, Wet Wipes, RNase Away) at three different viral loads: "high" (4 × 104 GE/mL), "medium" (1 × 104 GE/mL), and "low" (2.5 × 103 GE/mL). RNase Away, chosen as a positive control, was the most effective cleaning solution on all three viral loads. Wet Wipes were found to be more effective than BZK wipes in the medium viral load condition. The low viral load condition was easily reset with all three cleaning solutions. These findings will enable temporal SARS-CoV-2 monitoring in indoor environments where transmission risk of the virus is high and the need to avoid individual-level sampling for privacy or compliance reasons exists. IMPORTANCE Because SARS-CoV-2, the virus that causes COVID-19, persists on surfaces, testing swabs taken from surfaces is useful as a monitoring tool. This approach is especially valuable in school settings, where there are cost and privacy concerns that are eliminated by taking a single sample from a classroom. However, the virus persists for days to weeks on surface samples, so it is impossible to tell whether positive detection events on consecutive days are a persistent signal or new infectious cases and therefore whether the positive individuals have been successfully removed from the classroom. We compare several methods for cleaning "sentinel cards" to show that this approach can be used to identify new SARS-CoV-2 signals day to day. The results are important for determining how to monitor classrooms and other indoor environments for SARS-CoV-2 virus.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral , Endorribonucleases , Ribonuclease Pancreático , Ribonucleases
8.
mSystems ; 7(4): e0010322, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35703437

RESUMO

Surface sampling for SARS-CoV-2 RNA detection has shown considerable promise to detect exposure of built environments to infected individuals shedding virus who would not otherwise be detected. Here, we compare two popular sampling media (VTM and SDS) and two popular workflows (Thermo and PerkinElmer) for implementation of a surface sampling program suitable for environmental monitoring in public schools. We find that the SDS/Thermo pipeline shows superior sensitivity and specificity, but that the VTM/PerkinElmer pipeline is still sufficient to support surface surveillance in any indoor setting with stable cohorts of occupants (e.g., schools, prisons, group homes, etc.) and may be used to leverage existing investments in infrastructure. IMPORTANCE The ongoing COVID-19 pandemic has claimed the lives of over 5 million people worldwide. Due to high density occupancy of indoor spaces for prolonged periods of time, schools are often of concern for transmission, leading to widespread school closings to combat pandemic spread when cases rise. Since pediatric clinical testing is expensive and difficult from a consent perspective, we have deployed surface sampling in SASEA (Safer at School Early Alert), which allows for detection of SARS-CoV-2 from surfaces within a classroom. In this previous work, we developed a high-throughput method which requires robotic automation and specific reagents that are often not available for public health laboratories such as the San Diego County Public Health Laboratory (SDPHL). Therefore, we benchmarked our method (Thermo pipeline) against SDPHL's (PerkinElmer) more widely used method for the detection and prediction of SARS-CoV-2 exposure. While our method shows superior sensitivity (false-negative rate of 9% versus 27% for SDPHL), the SDPHL pipeline is sufficient to support surface surveillance in indoor settings. These findings are important since they show that existing investments in infrastructure can be leveraged to slow the spread of SARS-CoV-2 not in just the classroom but also in prisons, nursing homes, and other high-risk, indoor settings.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Criança , COVID-19/diagnóstico , Pandemias/prevenção & controle , RNA Viral , Automação
9.
mSystems ; 7(3): e0141121, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35575492

RESUMO

Monitoring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on surfaces is emerging as an important tool for identifying past exposure to individuals shedding viral RNA. Our past work demonstrated that SARS-CoV-2 reverse transcription-quantitative PCR (RT-qPCR) signals from surfaces can identify when infected individuals have touched surfaces and when they have been present in hospital rooms or schools. However, the sensitivity and specificity of surface sampling as a method for detecting the presence of a SARS-CoV-2 positive individual, as well as guidance about where to sample, has not been established. To address these questions and to test whether our past observations linking SARS-CoV-2 abundance to Rothia sp. in hospitals also hold in a residential setting, we performed a detailed spatial sampling of three isolation housing units, assessing each sample for SARS-CoV-2 abundance by RT-qPCR, linking the results to 16S rRNA gene amplicon sequences (to assess the bacterial community at each location), and to the Cq value of the contemporaneous clinical test. Our results showed that the highest SARS-CoV-2 load in this setting is on touched surfaces, such as light switches and faucets, but a detectable signal was present in many untouched surfaces (e.g., floors) that may be more relevant in settings, such as schools where mask-wearing is enforced. As in past studies, the bacterial community predicts which samples are positive for SARS-CoV-2, with Rothia sp. showing a positive association. IMPORTANCE Surface sampling for detecting SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is increasingly being used to locate infected individuals. We tested which indoor surfaces had high versus low viral loads by collecting 381 samples from three residential units where infected individuals resided, and interpreted the results in terms of whether SARS-CoV-2 was likely transmitted directly (e.g., touching a light switch) or indirectly (e.g., by droplets or aerosols settling). We found the highest loads where the subject touched the surface directly, although enough virus was detected on indirectly contacted surfaces to make such locations useful for sampling (e.g., in schools, where students did not touch the light switches and also wore masks such that they had no opportunity to touch their face and then the object). We also documented links between the bacteria present in a sample and the SARS-CoV-2 virus, consistent with earlier studies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Habitação , RNA Ribossômico 16S , Aerossóis e Gotículas Respiratórios
10.
medRxiv ; 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35411350

RESUMO

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing/sequencing capacity, which can also introduce biases. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here, we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We develop and deploy improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detect emerging variants of concern up to 14 days earlier in wastewater samples, and identify multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.

11.
Sleep ; 45(6)2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-34893914

RESUMO

STUDY OBJECTIVES: Chronic obstructive pulmonary disease and obstructive sleep apnea overlap syndrome is associated with excess mortality, and outcomes are related to the degree of hypoxemia. People at high altitudes are susceptible to periodic breathing, and hypoxia at altitude is associated with cardio-metabolic dysfunction. Hypoxemia in these scenarios may be described as superimposed sustained hypoxia (SH) plus intermittent hypoxia (IH), or overlap hypoxia (OH), the effects of which have not been investigated. We aimed to characterize the cardio-metabolic consequences of OH in mice. METHODS: C57BL/6J mice were subjected to either SH (FiO2 = 0.10), IH (FiO2 = 0.21 for 12 h, and FiO2 oscillating between 0.21 and 0.06, 60 times/hour, for 12 h), OH (FiO2 = 0.13 for 12 h, and FiO2 oscillating between 0.13 and 0.06, 60 times/hour, for 12 h), or room air (RA), n = 8/group. Blood pressure and intraperitoneal glucose tolerance test were measured serially, and right ventricular systolic pressure (RVSP) was assessed. RESULTS: Systolic blood pressure transiently increased in IH and OH relative to SH and RA. RVSP did not increase in IH, but increased in SH and OH by 52% (p < .001) and 20% (p = .001). Glucose disposal worsened in IH and improved in SH, with no change in OH. Serum low- and very-low-density lipoproteins increased in OH and SH, but not in IH. Hepatic oxidative stress increased in all hypoxic groups, with the highest increase in OH. CONCLUSIONS: OH may represent a unique and deleterious cardio-metabolic stimulus, causing systemic and pulmonary hypertension, and without protective metabolic effects characteristic of SH.


Assuntos
Hipóxia , Apneia Obstrutiva do Sono , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/metabolismo , Fenótipo
12.
medRxiv ; 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34909793

RESUMO

Monitoring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on surfaces is emerging as an important tool for identifying past exposure to individuals shedding viral RNA. Our past work has demonstrated that SARS-CoV-2 reverse transcription-quantitative PCR (RT-qPCR) signals from surfaces can identify when infected individuals have touched surfaces such as Halloween candy, and when they have been present in hospital rooms or schools. However, the sensitivity and specificity of surface sampling as a method for detecting the presence of a SARS-CoV-2 positive individual, as well as guidance about where to sample, has not been established. To address these questions, and to test whether our past observations linking SARS-CoV-2 abundance to Rothia spp. in hospitals also hold in a residential setting, we performed detailed spatial sampling of three isolation housing units, assessing each sample for SARS-CoV-2 abundance by RT-qPCR, linking the results to 16S rRNA gene amplicon sequences to assess the bacterial community at each location and to the Cq value of the contemporaneous clinical test. Our results show that the highest SARS-CoV-2 load in this setting is on touched surfaces such as light switches and faucets, but detectable signal is present in many non-touched surfaces that may be more relevant in settings such as schools where mask wearing is enforced. As in past studies, the bacterial community predicts which samples are positive for SARS-CoV-2, with Rothia sp. showing a positive association. IMPORTANCE: Surface sampling for detecting SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is increasingly being used to locate infected individuals. We tested which indoor surfaces had high versus low viral loads by collecting 381 samples from three residential units where infected individuals resided, and interpreted the results in terms of whether SARS-CoV-2 was likely transmitted directly (e.g. touching a light switch) or indirectly (e.g. by droplets or aerosols settling). We found highest loads where the subject touched the surface directly, although enough virus was detected on indirectly contacted surfaces to make such locations useful for sampling (e.g. in schools, where students do not touch the light switches and also wear masks so they have no opportunity to touch their face and then the object). We also documented links between the bacteria present in a sample and the SARS-CoV-2 virus, consistent with earlier studies.

13.
mSystems ; 6(6): e0113621, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34726486

RESUMO

Environmental monitoring in public spaces can be used to identify surfaces contaminated by persons with coronavirus disease 2019 (COVID-19) and inform appropriate infection mitigation responses. Research groups have reported detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on surfaces days or weeks after the virus has been deposited, making it difficult to estimate when an infected individual may have shed virus onto a SARS-CoV-2-positive surface, which in turn complicates the process of establishing effective quarantine measures. In this study, we determined that reverse transcription-quantitative PCR (RT-qPCR) detection of viral RNA from heat-inactivated particles experiences minimal decay over 7 days of monitoring on eight out of nine surfaces tested. The properties of the studied surfaces result in RT-qPCR signatures that can be segregated into two material categories, rough and smooth, where smooth surfaces have a lower limit of detection. RT-qPCR signal intensity (average quantification cycle [Cq]) can be correlated with surface viral load using only one linear regression model per material category. The same experiment was performed with untreated viral particles on one surface from each category, with essentially identical results. The stability of RT-qPCR viral signal demonstrates the need to clean monitored surfaces after sampling to establish temporal resolution. Additionally, these findings can be used to minimize the number of materials and time points tested and allow for the use of heat-inactivated viral particles when optimizing environmental monitoring methods. IMPORTANCE Environmental monitoring is an important tool for public health surveillance, particularly in settings with low rates of diagnostic testing. Time between sampling public environments, such as hospitals or schools, and notifying stakeholders of the results should be minimal, allowing decisions to be made toward containing outbreaks of coronavirus disease 2019 (COVID-19). The Safer At School Early Alert program (SASEA) (https://saseasystem.org/), a large-scale environmental monitoring effort in elementary school and child care settings, has processed >13,000 surface samples for SARS-CoV-2, detecting viral signals from 574 samples. However, consecutive detection events necessitated the present study to establish appropriate response practices around persistent viral signals on classroom surfaces. Other research groups and clinical labs developing environmental monitoring methods may need to establish their own correlation between RT-qPCR results and viral load, but this work provides evidence justifying simplified experimental designs, like reduced testing materials and the use of heat-inactivated viral particles.

14.
bioRxiv ; 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34312621

RESUMO

Environmental monitoring in public spaces can be used to identify surfaces contaminated by persons with COVID-19 and inform appropriate infection mitigation responses. Research groups have reported detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) on surfaces days or weeks after the virus has been deposited, making it difficult to estimate when an infected individual may have shed virus onto a SARS-CoV-2 positive surface, which in turn complicates the process of establishing effective quarantine measures. In this study, we determined that reverse transcription-quantitative polymerase chain reaction (RT-qPCR) detection of viral RNA from heat-inactivated particles experiences minimal decay over seven days of monitoring on eight out of nine surfaces tested. The properties of the studied surfaces result in RT-qPCR signatures that can be segregated into two material categories, rough and smooth, where smooth surfaces have a lower limit of detection. RT-qPCR signal intensity (average quantification cycle (Cq)) can be correlated to surface viral load using only one linear regression model per material category. The same experiment was performed with infectious viral particles on one surface from each category, with essentially identical results. The stability of RT-qPCR viral signal demonstrates the need to clean monitored surfaces after sampling to establish temporal resolution. Additionally, these findings can be used to minimize the number of materials and time points tested and allow for the use of heat-inactivated viral particles when optimizing environmental monitoring methods.

15.
Front Genet ; 11: 471, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528523

RESUMO

Human populations at high altitude exhibit both unique physiological responses and strong genetic signatures of selection thought to compensate for the decreased availability of oxygen in each breath of air. With the increased availability of genomic information from Tibetans, Andeans, and Ethiopians, much progress has been made to elucidate genetic adaptations to chronic hypoxia that have occurred throughout hundreds of generations in these populations. In this perspectives piece, we discuss specific hypoxia-pathway variants that have been identified in high-altitude populations and methods for functional investigation, which may be used to determine the underlying causal factors that afford adaptation to high altitude.

16.
Ann Hum Genet ; 83(3): 171-176, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30719713

RESUMO

EGLN1 encodes the hypoxia-inducible factor (HIF) pathway prolyl hydroxylase 2 (PHD2) that serves as an oxygen-sensitive regulator of HIF activity. The EGLN1 locus exhibits a signature of positive selection in Tibetan and Andean populations and is associated with hemoglobin concentration in Tibetans. Recent reports provide evidence for functional roles of protein-coding variants within the first exon of EGLN1 (rs186996510, rs12097901) that are linked to an adaptive signal in Tibetans, yet whether these same variants are present and contribute to adaptation in Andean highlanders is unknown. We determined the frequencies of these adaptive Tibetan alleles in Quechua Andeans resident at high altitude (4,350 m) in addition to individuals of Nepali ancestry resident at sea level. The rs186996510 C (minor) allele previously found at high frequency in Tibetans is absent in Andean (G: 100%) and rare among Nepali (C: 11.8%, G: 88.2%) cohorts. The minor G allele of rs12097901 is found at similarly low frequencies in Andeans (G: 12.7%, C: 87.3%) and Nepalis (G: 23.5%, C: 76.5%) compared to Tibetans. These results suggest that adaptation involving EGLN1 in Andeans involves different mechanisms than those described in Tibetans. The precise Andean adaptive variants remain to be determined.


Assuntos
Altitude , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Adaptação Fisiológica/genética , Adulto , Idoso , Alelos , Éxons , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Nepal , Peru , Polimorfismo de Nucleotídeo Único , Tibet , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...