Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 45(4): 1286-1297, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35128680

RESUMO

Across plant species and biomes, a conserved set of leaf traits govern the economic strategy used to assimilate and invest carbon. As plants age, they face new challenges that may require shifts in this leaf economic strategy. In this study, we investigate the role of the developmental transition, vegetative phase change (VPC), in altering carbon economics as plants age. We used overexpression of microRNA 156 (miR156), the master regulator of VPC, to modulate the timing of VPC in Populus tremula x alba, Arabidopsis thaliana and Zea mays to understand the impact of this transition on leaf economic traits, including construction cost, payback time and return on investment. Here, we find that VPC causes a shift from a low-cost, quick return juvenile strategy to a high-cost, high-return adult strategy. The juvenile strategy is advantageous in light-limited conditions, whereas the adult strategy provides greater returns in high light. The transition between these strategies is correlated with the developmental decline in the level of miR156, suggesting that is regulated by the miR156/SPL pathway. Our results provide an ecophysiological explanation for the existence of juvenile and adult leaf types and suggest that natural selection for these alternative economic strategies could be an important factor in plant evolution.


Assuntos
Arabidopsis , MicroRNAs , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Folhas de Planta/metabolismo , Populus/genética , Populus/metabolismo
2.
New Phytol ; 231(1): 351-364, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33660260

RESUMO

Plants transition through juvenile and adult phases of vegetative development in a process known as vegetative phase change (VPC). In poplars (genus Populus) the differences between these stages are subtle, making it difficult to determine when this transition occurs. Previous studies of VPC in poplars have relied on plants propagated in vitro, leaving the natural progression of this process unknown. We examined developmental morphology of seed-grown and in vitro derived Populus tremula × alba (clone 717-1B4), and compared the phenotype of these to transgenics with manipulated miR156 expression, the master regulator of VPC. In seed-grown plants, most traits changed from node-to-node during the first 3 months of development but remained constant after node 25. Many traits remained unchanged in clones over-expressing miR156, or were enhanced when miR156 was lowered, demonstrating their natural progression is regulated by the miR156/SPL pathway. The characteristic leaf fluttering of Populus is one of these miR156-regulated traits. Vegetative development in plants grown from culture mirrored that of seed-grown plants, allowing direct comparison between plants often used in research and those found in nature. These results provide a foundation for further research on the role of VPC in the ecology and evolution of this economically important genus.


Assuntos
MicroRNAs , Populus , Regulação da Expressão Gênica de Plantas , Fenótipo , Folhas de Planta , Populus/genética
3.
New Phytol ; 231(3): 1008-1022, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33064860

RESUMO

Plant morphology and physiology change with growth and development. Some of these changes are due to change in plant size and some are the result of genetically programmed developmental transitions. In this study we investigate the role of the developmental transition, vegetative phase change (VPC), on morphological and photosynthetic changes. We used overexpression of microRNA156, the master regulator of VPC, to modulate the timing of VPC in Populus tremula × alba, Zea mays, and Arabidopsis thaliana to determine its role in trait variation independent of changes in size and overall age. Here, we find that juvenile and adult leaves in all three species photosynthesize at different rates and that these differences are due to phase-dependent changes in specific leaf area (SLA) and leaf N but not photosynthetic biochemistry. Further, we found juvenile leaves with high SLA were associated with better photosynthetic performance at low light levels. This study establishes a role for VPC in leaf composition and photosynthetic performance across diverse species and environments. Variation in leaf traits due to VPC are likely to provide distinct benefits under specific environments; as a result, selection on the timing of this transition could be a mechanism for environmental adaptation.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Fotossíntese , Folhas de Planta/metabolismo
4.
Plant Cell Environ ; 42(2): 740-750, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30374982

RESUMO

The rapid A-Ci response (RACiR) technique alleviates limitations of measuring photosynthetic capacity by reducing the time needed to determine the maximum carboxylation rate (Vcmax ) and electron transport rate (Jmax ) in leaves. Photosynthetic capacity and its relationships with leaf development are important for understanding ecological and agricultural productivity; however, our current understanding is incomplete. Here, we show that RACiR can be used in previous generation gas exchange systems (i.e., the LI-6400) and apply this method to rapidly investigate developmental gradients of photosynthetic capacity in poplar. We compared RACiR-determined Vcmax and Jmax as well as respiration and stomatal conductance (gs ) across four stages of leaf expansion in Populus deltoides and the poplar hybrid 717-1B4 (Populus tremula × Populus alba). These physiological data were paired with leaf traits including nitrogen concentration, chlorophyll concentrations, and specific leaf area. Several traits displayed developmental trends that differed between the poplar species, demonstrating the utility of RACiR approaches to rapidly generate accurate measures of photosynthetic capacity. By using both new and old machines, we have shown how more investigators will be able to incorporate measurements of important photosynthetic traits in future studies and further our understanding of relationships between development and leaf-level physiology.


Assuntos
Fotossíntese , Populus/metabolismo , Clorofila/metabolismo , Transporte de Elétrons , Nitrogênio/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Transpiração Vegetal , Populus/anatomia & histologia , Ribulose-Bifosfato Carboxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...