Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Ecol ; 43(10): 996-1006, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28986689

RESUMO

Fusaric acid (FA) produced by Fusarium oxysporum plays an important role in disease development in plants, including cotton. This non-specific toxin also has antibiotic effects on microorganisms. Thus, one expects a potential pool of diverse detoxification mechanisms of FA in nature. Bacteria and fungi from soils infested with Fusarium and from laboratory sources were evaluated for their ability to grow in the presence of FA and to alter the structure of FA into less toxic compounds. None of the bacterial strains were able to chemically modify FA. Highly FA-resistant strains were found only in Gram-negative bacteria, mainly in the genus of Pseudomonas. The FA resistance of the Gram-negative bacteria was positively correlated with the number of predicted genes for FA efflux pumps present in the genome. Phylogenetic analysis of predicted FA resistance proteins (FUSC, an inner membrane transporter component of the efflux pump) revealed that FUSC proteins having high sequence identities with the functionally characterized FA resistance protein FusC or Fdt might be the major contributors of FA resistance. In contrast, most fungi converted FA to less toxic compounds regardless of the level of FA resistance they exhibited. Five derivatives were detected, and the detoxification of FA involved either oxidative reactions on the butyl side chain or reductive reactions on the carboxylic acid group. The production of these metabolites from widely different phyla indicates that resistance to FA by altering its structure is highly conserved. A few FA resistant saprophytic or biocontrol strains of fungi were incapable of altering FA, indicating a possible involvement of efflux transporters. Deployment of both efflux and derivatization mechanisms may be a common feature of fungal FA resistance.


Assuntos
Antibacterianos/metabolismo , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Ácido Fusárico/metabolismo , Fusarium/fisiologia , Microbiologia do Solo , Antibacterianos/farmacologia , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Resistência Microbiana a Medicamentos , Fungos/crescimento & desenvolvimento , Fungos/isolamento & purificação , Ácido Fusárico/farmacologia , Doenças das Plantas/microbiologia
2.
Plant Mol Biol ; 80(2): 131-55, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22689004

RESUMO

Transcriptional mapping experiments of the major soybean cyst nematode resistance locus, rhg1, identified expression of the vesicular transport machinery component, α soluble NSF attachment protein (α-SNAP), occurring during defense. Sequencing the α-SNAP coding regions from the resistant genotypes G. max ([Peking/PI 548402]) and G. max ([PI 437654]) revealed they are identical, but differ from the susceptible G. max ([Williams 82/PI 518671]) by the presence of several single nucleotide polymorphisms. Using G. max ([Williams 82/PI 518671]) as a reference, a G â†’ T(2,822) transversion in the genomic DNA sequence at a functional splice site of the α-SNAP([Peking/PI 548402]) allele produced an additional 17 nucleotides of mRNA sequence that contains an in-frame stop codon caused by a downstream G â†’ A(2,832) transition. The G. max ([Peking/PI 548402]) genotype has cell wall appositions (CWAs), structures identified as forming as part of a defense response by the activity of the vesicular transport machinery. In contrast, the 17 nt α-SNAP([Peking/PI 548402]) mRNA motif is not found in G. max ([PI 88788]) that exhibits defense to H. glycines, but lack CWAs. The α-SNAP([PI 88788]) promoter contains sequence elements that are nearly identical to the α-SNAP([Peking/PI 548402]) allele, but differs from the G. max ([Williams 82/PI 518671]) ortholog. Overexpressing the α-SNAP([Peking/PI 548402]) allele in the susceptible G. max ([Williams 82/PI 518671]) genotype suppressed H. glycines infection. The experiments indicate a role for the vesicular transport machinery during infection of soybean by the soybean cyst nematode. However, increased GmEREBP1, PR1, PR2, PR5 gene activity but suppressed PR3 expression accompanied the overexpression of the α-SNAP([Peking/PI 548402]) allele prior to infection.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/genética , Proteínas de Plantas/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Resistência à Doença/genética , Genótipo , Interações Hospedeiro-Parasita , Dados de Sequência Molecular , Mutação , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Glycine max/classificação , Glycine max/parasitologia , Especificidade da Espécie , Tylenchoidea/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...