Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Geosci Front ; 14(2): 1-13, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36760680

RESUMO

Permeable reactive barriers (PRBs) are used for groundwater remediation at contaminated sites worldwide. This technology has been efficient at appropriate sites for treating organic and inorganic contaminants using zero-valent iron (ZVI) as a reductant and as a reactive material. Continued development of the technology over the years suggests that a robust understanding of PRB performance and the mechanisms involved is still lacking. Conflicting information in the scientific literature downplays the critical role of ZVI corrosion in the remediation of various organic and inorganic pollutants. Additionally, there is a lack of information on how different mechanisms act in tandem to affect ZVI-groundwater systems through time. In this review paper, we describe the underlying mechanisms of PRB performance and remove isolated misconceptions. We discuss the primary mechanisms of ZVI transformation and aging in PRBs and the role of iron corrosion products. We review numerous sites to reinforce our understanding of the interactions between groundwater contaminants and ZVI and the authigenic minerals that form within PRBs. Our findings show that ZVI corrosion products and mineral precipitates play critical roles in the long-term performance of PRBs by influencing the reactivity of ZVI. Pore occlusion by mineral precipitates occurs at the influent side of PRBs and is enhanced by dissolved oxygen and groundwater rich in dissolved solids and high alkalinity, which negatively impacts hydraulic conductivity, allowing contaminants to potentially bypass the treatment zone. Further development of site characterization tools and models is needed to support effective PRB designs for groundwater remediation.

3.
J Environ Qual ; 47(3): 452-461, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29864182

RESUMO

The capacity of biochars to adsorb ionic contaminants is strongly influenced by biochar surface chemistry. We studied the effects of biomass feedstock type, pyrolysis temperature, reaction media pH, and AlCl pre-pyrolysis feedstock treatments on biochar anion exchange capacity (AEC), cation exchange capacity (CEC), point of zero net charge (PZNC), and point of zero salt effect (PZSE). We used the relationship between PZNC and PZSE to probe biochar surfaces for the presence of unstable (hydrolyzable) surface charge functional groups. The results indicate that biochars produced at ≤500°C have high CECs and low AEC, PZSE, and PZNC values due to the dominance of negative surface charge arising from carboxylate and phenolate functional groups. Biochars produced at ≥700°C have low CEC and high AEC, PZSE, and PZNC values, consistent with a dominance of positive surface charge arising from nonhydrolyzable bridging oxonium (oxygen heterocycles) groups. However, biochars produced at moderate temperatures (500-700°C) have high PZSE and low PZNC values, indicating the presence of nonbridging oxonium groups, which are rapidly degraded under alkaline conditions by OH attack on the oxonium α-C. Biochars treated with AlCl have high AEC, PZSE, and PZNC values due to variably charged aluminol groups on biochar surfaces. The results provide support for the presence of both hydrolyzable and nonhydrolyzable oxonium groups on biochar surfaces. They also demonstrate that biochars produced at high pyrolysis temperatures (>700°C) or those receiving pre-pyrolysis treatments with AlCl are optimized for anionic contaminant adsorption, whereas biochars produced at low pyrolysis temperatures (400°C) are optimized for cationic contaminant adsorption.


Assuntos
Carvão Vegetal/química , Temperatura Alta , Adsorção , Biomassa
4.
Chemosphere ; 167: 367-373, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27743533

RESUMO

Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pKa organic structural (0.03-0.34 meq g-1), other organic (0-0.92 meq g-1), carbonate (0.02-1.5 meq g-1), and other inorganic (0-0.26 meq g-1) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis.


Assuntos
Carvão Vegetal/química , Cátions , Celulose/química , Concentração de Íons de Hidrogênio , Solo/química , Poluentes do Solo/análise , Madeira/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...