Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866053

RESUMO

Nucleotide-binding leucine-rich repeat (NLR) proteins have a pivotal role in plant immunity by recognizing pathogen effectors1,2. Maintaining a balanced immune response is crucial, as excessive NLR expression can lead to unintended autoimmunity3,4. Unlike most NLRs, plant NLR required for cell death 2 (NRC2) belongs to a small NLR group characterized by constitutively high expression without self-activation5. The mechanisms underlying NRC2 autoinhibition and activation are not yet understood. Here we show that Solanum lycopersicum (tomato) NRC2 (SlNRC2) forms dimers and tetramers, and higher-order oligomers at elevated concentrations. Cryo-electron microscopy (cryo-EM) reveals an inactive conformation of SlNRC2 within these oligomers. Dimerization and oligomerization not only stabilize the inactive state but also sequester SlNRC2 from assembling into an active form. Mutations at the dimeric or inter-dimeric interfaces enhance pathogen-induced cell death and immunity in Nicotiana (N.) benthamiana. The cryo-EM structures unexpectedly reveal inositol hexakisphosphate (IP6) or pentakisphosphate (IP5) bound to the inner surface of SlNRC2's C-terminal LRR domain as confirmed by mass spectrometry. Mutations at the IP-binding site impair inositol phosphate binding of SlNRC2 and pathogen-induced SlNRC2-mediated cell death in N. benthamiana. Together, our study unveils a novel negative regulatory mechanism of NLR activation and suggests inositol phosphates as cofactors of NRCs.

2.
Proc Natl Acad Sci U S A ; 120(32): e2307604120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523523

RESUMO

In plants, host-pathogen coevolution often manifests in reciprocal, adaptive genetic changes through variations in host nucleotide-binding leucine-rich repeat immune receptors (NLRs) and virulence-promoting pathogen effectors. In grass powdery mildew (PM) fungi, an extreme expansion of a RNase-like effector family, termed RALPH, dominates the effector repertoire, with some members recognized as avirulence (AVR) effectors by cereal NLR receptors. We report the structures of the sequence-unrelated barley PM effectors AVRA6, AVRA7, and allelic AVRA10/AVRA22 variants, which are detected by highly sequence-related barley NLRs MLA6, MLA7, MLA10, and MLA22 and of wheat PM AVRPM2 detected by the unrelated wheat NLR PM2. The AVR effectors adopt a common scaffold, which is shared with the RNase T1/F1 family. We found striking variations in the number, position, and length of individual structural elements between RALPH AVRs, which is associated with a differentiation of RALPH effector subfamilies. We show that all RALPH AVRs tested have lost nuclease and synthetase activities of the RNase T1/F1 family and lack significant binding to RNA, implying that their virulence activities are associated with neo-functionalization events. Structure-guided mutagenesis identified six AVRA6 residues that are sufficient to turn a sequence-diverged member of the same RALPH subfamily into an effector specifically detected by MLA6. Similar structure-guided information for AVRA10 and AVRA22 indicates that MLA receptors detect largely distinct effector surface patches. Thus, coupling of sequence and structural polymorphisms within the RALPH scaffold of PMs facilitated escape from NLR recognition and potential acquisition of diverse virulence functions.


Assuntos
Ascomicetos , Ascomicetos/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Ribonuclease T1/genética , Ribonuclease T1/metabolismo , Polimorfismo Genético , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo
3.
Nature ; 610(7932): 532-539, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36163289

RESUMO

Plant intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) detect pathogen effectors to trigger immune responses1. Indirect recognition of a pathogen effector by the dicotyledonous Arabidopsis thaliana coiled-coil domain containing NLR (CNL) ZAR1 induces the formation of a large hetero-oligomeric protein complex, termed the ZAR1 resistosome, which functions as a calcium channel required for ZAR1-mediated immunity2-4. Whether the resistosome and channel activities are conserved among plant CNLs remains unknown. Here we report the cryo-electron microscopy structure of the wheat CNL Sr355 in complex with the effector AvrSr356 of the wheat stem rust pathogen. Direct effector binding to the leucine-rich repeats of Sr35 results in the formation of a pentameric Sr35-AvrSr35 complex, which we term the Sr35 resistosome. Wheat Sr35 and Arabidopsis ZAR1 resistosomes bear striking structural similarities, including an arginine cluster in the leucine-rich repeats domain not previously recognized as conserved, which co-occurs and forms intramolecular interactions with the 'EDVID' motif in the coiled-coil domain. Electrophysiological measurements show that the Sr35 resistosome exhibits non-selective cation channel activity. These structural insights allowed us to generate new variants of closely related wheat and barley orphan NLRs that recognize AvrSr35. Our data support the evolutionary conservation of CNL resistosomes in plants and demonstrate proof of principle for structure-based engineering of NLRs for crop improvement.


Assuntos
Canais de Cálcio , Microscopia Crioeletrônica , Proteínas NLR , Proteínas de Plantas , Receptores Imunológicos , Triticum , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arginina , Canais de Cálcio/química , Canais de Cálcio/imunologia , Canais de Cálcio/metabolismo , Cátions/metabolismo , Leucina , Proteínas NLR/química , Proteínas NLR/imunologia , Proteínas NLR/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Receptores Imunológicos/química , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Triticum/imunologia , Triticum/metabolismo , Motivos de Aminoácidos , Sequência Conservada , Eletrofisiologia
4.
Proc Natl Acad Sci U S A ; 119(30): e2108808119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35857869

RESUMO

Introgressions of chromosomal segments from related species into wheat are important sources of resistance against fungal diseases. The durability and effectiveness of introgressed resistance genes upon agricultural deployment is highly variable-a phenomenon that remains poorly understood, as the corresponding fungal avirulence genes are largely unknown. Until its breakdown, the Pm17 resistance gene introgressed from rye to wheat provided broad resistance against powdery mildew (Blumeria graminis). Here, we used quantitative trait locus (QTL) mapping to identify the corresponding wheat mildew avirulence effector AvrPm17. It is encoded by two paralogous genes that exhibit signatures of reoccurring gene conversion events and are members of a mildew sublineage specific effector cluster. Extensive haplovariant mining in wheat mildew and related sublineages identified several ancient virulent AvrPm17 variants that were present as standing genetic variation in wheat powdery mildew prior to the Pm17 introgression, thereby paving the way for the rapid breakdown of the Pm17 resistance. QTL mapping in mildew identified a second genetic component likely corresponding to an additional resistance gene present on the 1AL.1RS translocation carrying Pm17. This gene remained previously undetected due to suppressed recombination within the introgressed rye chromosomal segment. We conclude that the initial effectiveness of 1AL.1RS was based on simultaneous introgression of two genetically linked resistance genes. Our results demonstrate the relevance of pathogen-based genetic approaches to disentangling complex resistance loci in wheat. We propose that identification and monitoring of avirulence gene diversity in pathogen populations become an integral part of introgression breeding to ensure effective and durable resistance in wheat.


Assuntos
Resistência à Doença , Introgressão Genética , Doenças das Plantas , Secale , Triticum , Mapeamento Cromossômico , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Secale/genética , Secale/microbiologia , Triticum/genética , Triticum/microbiologia
5.
Nat Plants ; 8(2): 100-101, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35105950
6.
PLoS Pathog ; 17(2): e1009223, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33534797

RESUMO

Nucleotide-binding domain leucine-rich repeat-containing receptors (NLRs) in plants can detect avirulence (AVR) effectors of pathogenic microbes. The Mildew locus a (Mla) NLR gene has been shown to confer resistance against diverse fungal pathogens in cereal crops. In barley, Mla has undergone allelic diversification in the host population and confers isolate-specific immunity against the powdery mildew-causing fungal pathogen Blumeria graminis forma specialis hordei (Bgh). We previously isolated the Bgh effectors AVRA1, AVRA7, AVRA9, AVRA13, and allelic AVRA10/AVRA22, which are recognized by matching MLA1, MLA7, MLA9, MLA13, MLA10 and MLA22, respectively. Here, we extend our knowledge of the Bgh effector repertoire by isolating the AVRA6 effector, which belongs to the family of catalytically inactive RNase-Like Proteins expressed in Haustoria (RALPHs). Using structural prediction, we also identified RNase-like folds in AVRA1, AVRA7, AVRA10/AVRA22, and AVRA13, suggesting that allelic MLA recognition specificities could detect structurally related avirulence effectors. To better understand the mechanism underlying the recognition of effectors by MLAs, we deployed chimeric MLA1 and MLA6, as well as chimeric MLA10 and MLA22 receptors in plant co-expression assays, which showed that the recognition specificity for AVRA1 and AVRA6 as well as allelic AVRA10 and AVRA22 is largely determined by the receptors' C-terminal leucine-rich repeats (LRRs). The design of avirulence effector hybrids allowed us to identify four specific AVRA10 and five specific AVRA22 aa residues that are necessary to confer MLA10- and MLA22-specific recognition, respectively. This suggests that the MLA LRR mediates isolate-specific recognition of structurally related AVRA effectors. Thus, functional diversification of multi-allelic MLA receptors may be driven by a common structural effector scaffold, which could be facilitated by proliferation of the RALPH effector family in the pathogen genome.


Assuntos
Ascomicetos/fisiologia , Hordeum/genética , Leucina/química , Doenças das Plantas/genética , Proteínas de Plantas/genética , Receptores Imunológicos/genética , Ribonucleases/química , Alelos , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Variação Genética , Hordeum/imunologia , Hordeum/microbiologia , Imunidade Inata , Leucina/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Receptores Imunológicos/metabolismo , Ribonucleases/metabolismo , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...