Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nanosci Au ; 4(4): 250-262, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39184833

RESUMO

Single-molecule experiments offer a unique means to probe molecular properties of individual molecules-yet they rest upon the successful control of background noise and irrelevant signals. In single-molecule transport studies, large amounts of data that probe a wide range of physical and chemical behaviors are often generated. However, due to the stochasticity of these experiments, a substantial fraction of the data may consist of blank traces where no molecular signal is evident. One-class (OC) classification is a machine learning technique to identify a specific class in a data set that potentially consists of a wide variety of classes. Here, we examine the utility of two different types of OC classification models on four diverse data sets from three different laboratories. Two of these data sets were measured at cryogenic temperatures and two at room temperature. By training the models solely on traces from a blank experiment, we demonstrate the efficacy of OC classification as a powerful and reliable method for filtering out blank traces from a molecular experiment in all four data sets. On a labeled 4,4'-bipyridine data set measured at 4.2 K, we achieve an accuracy of 96.9 ± 0.3 and an area under the receiver operating characteristic curve of 99.5 ± 0.3 as validated over a fivefold cross-validation. Given the wide range of physical and chemical properties that can be probed in single-molecule experiments, the successful application of OC classification to filter out blank traces is a major step forward in our ability to understand and manipulate molecular properties.

2.
Nanoscale ; 16(4): 2022-2029, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38197186

RESUMO

Single molecule conductance measurements typically rely on functional linker groups to anchor the molecule to the conductive electrodes through a donor-acceptor or covalent bond. While many linking moieties, such as thiols, amines, thiothers and phosphines have been used among others, very few involve oxygen binding directly to gold electrodes. Here, we report successful single molecule conductance measurements using hydroxy (OH)-containing phenol linkers and show that the molecule-gold attachment and electron transport are mediated by a direct O-Au bond. We find that deprotonation of the hydroxy moiety is necessary for metal-molecule binding to proceed, so that junction formation can be activated through pH control. Electronic structure and DFT+Σ transport calculations confirm our experimental findings that phenolate-terminated alkanes can anchor on the gold and show charge transport trends consistent with prior observations of alkane conductance with other linker groups. Critically, the deprotonated O--Au binding shows features similar to the thiolate-Au bond, but without the junction disruption caused by intercalation of sulfur into electrode tips often observed with thiol-terminated molecules. By comparing the conductance and binding features of O-Au and S-Au bonds, this study provides insight into the aspects of Au-linker bonding that promote reproducible and robust single molecule junction measurements.

3.
J Phys Chem Lett ; 14(37): 8327-8333, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37695735

RESUMO

We perform single-molecule conductance measurements and DFT calculations on histamine, a biogenic amine that contains a flexible aliphatic linker and several nitrogen moieties with a potential for hydrogen bonding. Our study determines that junctions containing the free-base form of histamine can bridge through a molecular structure containing an intramolecular hydrogen bond. Conductance of this structure is higher than that through the saturated aliphatic linker. Flicker noise analysis of junction conductance confirms that transport occurs through the hydrogen bond and establishes a benchmark for noise measurements in hydrogen-bonded junctions. Overall, our work provides insights into the formation and conduction of intramolecular hydrogen bonding in single-molecule conductance measurements and into the conformations of the neurotransmitter histamine on noble metal surfaces.

4.
ACS Nano ; 17(16): 16107-16114, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37540771

RESUMO

Understanding and manipulating quantum interference (QI) effects in single molecule junction conductance can enable the design of molecular-scale devices. Here we demonstrate QI between σ and π molecular orbitals in an ∼4 Å molecule, pyrazine, bridging source and drain electrodes. Using single molecule conductance measurements, first-principles analysis, and electronic transport calculations, we show that this phenomenon leads to distinct patterns of electron transport in nanoscale junctions, such as destructive interference through the para position of a six-membered ring. These QI effects can be tuned to allow conductance switching using environmental pH control. Our work lays out a conceptual framework for engineering QI features in short molecular systems through synthetic and external manipulation that tunes the energies and symmetries of the σ and π channels.

5.
Nano Lett ; 23(15): 6937-6943, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37486358

RESUMO

We demonstrate enhanced electronic transport through dimer molecular junctions, which self-assemble between two gold electrodes in π-π stabilized binding configurations. Single molecule junction conductance measurements show that benzimidazole molecules assemble into dimer junctions with a per-molecule conductance that is higher than that in monomer junctions. Density functional theory calculations reveal that parallel stacking of two benzimidazoles between electrodes is the most energetically favorable due to the large π system. Imidazole is smaller and has greater conformational freedom to access different stacking angles. Transport calculations confirm that the conductance enhancement of benzimidazole dimers results from the changed binding geometry of dimers on gold, which is stabilized and made energetically accessible by intermolecular π stacking. We engineer imidazole derivatives with higher monomer conductance than benzimidazole and large intermolecular interaction that promote cooperative in situ assembly of more transparent dimer junctions and suggest at the potential of molecular devices based on self-assembled molecular layers.

6.
J Am Chem Soc ; 144(14): 6504-6515, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35353518

RESUMO

Single-molecule circuits with group 8 metallocenes are formed without additional linker groups in scanning tunneling microscope-based break junction (STMBJ) measurements at cryogenic and room-temperature conditions with gold (Au) electrodes. We investigate the nature of this direct gold-π binding motif and its effect on molecular conductance and persistence characteristics during junction evolution. The measurement technique under cryogenic conditions tracks molecular plateaus through the full cycle of extension and compression. Analysis reveals that junction persistence when the metal electrodes are pushed together correlates with whether electrodes are locally sharp or blunt, suggesting distinct scenarios for metallocene junction formation and evolution. The top and bottom surfaces of the "barrel"-shaped metallocenes present the electron-rich π system of cyclopentadienyl rings, which interacts with the gold electrodes in two distinct ways. An undercoordinated gold atom on a sharp tip forms a donor-acceptor bond to a specific carbon atom in the ring. However, a small, flat patch on a dull tip can bind more strongly to the ring as a whole through van der Waals interactions. Density functional theory (DFT)-based calculations of model electrode structures provide an atomic-scale picture of these scenarios, demonstrating the role of these bonding motifs during junction evolution and showing that the conductance is relatively independent of tip atomic-scale structure. The nonspecific interaction of the cyclopentadienyl rings with the electrodes enables extended conductance plateaus, a mechanism distinct from that identified for the more commonly studied, rod-shaped organic molecular wires.


Assuntos
Ouro , Nanotecnologia , Eletrodos , Ouro/química , Metalocenos , Nanotecnologia/métodos , Compostos Organometálicos
7.
Nano Lett ; 20(6): 4687-4692, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32364746

RESUMO

We identify imidazole as a pH-activated linker for forming stable single molecule-gold junctions with several distinct configurations and reproducible electrical characteristics. Using a scanning tunneling microscope break junction (STMBJ) technique, we find multiple robust conductance signatures at integer multiples of 1.9 × 10-2G0 and 1.2 × 10-4G0 and determine that this molecule bridges the electrodes in its deprotonated form through the nitrogen atoms in basic conditions only, with several molecules able to bind in parallel and in series. The elongation these junctions can sustain is longer than the length of the molecule, suggesting that plastic deformation of gold electrodes occurs during stretching. Density functional theory calculations confirm that the imidazolate-linked junctions exhibit bond strengths of ∼2 eV, which can allow for plastic extraction of gold atoms. On the basis of these results, we hypothesize that lower conductance peaks correspond to chains of repeating molecule-gold units that we form and measure in situ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA