Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 39(41): 9982-7, 2010 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-20871896

RESUMO

Polyphenol prevention of iron-mediated DNA damage occurs primarily through iron binding. Once bound, iron in the Fe(2+)-polyphenol complex autooxidizes to Fe(3+) in the presence of O(2). To determine the correlation between the rate of Fe(2+)-polyphenol autooxidation and polyphenol antioxidant ability, kinetic studies at pH = 6.0 in the presence of oxygen were performed using UV-vis spectrophotometry. Initial rates of iron-polyphenol complex oxidation for epigallocatechin gallate (EGCG), methyl-3,4,5-trihydroxybenzoate (MEGA), gallic acid (GA), epicatechin (EC), and methyl-3,4-dihydroxybenzoate (MEPCA) were in the range of 0.14-6.7 min(-1). Polyphenols with gallol groups have faster rates of iron oxidation than their catechol analogs, suggesting that stronger iron binding results in faster iron oxidation. Concentrations of polyphenol, Fe(2+), and O(2) were varied to investigate the dependence of the Fe(2+)-polyphenol autooxidation on these reactants for MEGA and MEPCA. For these analogous gallate and catecholate complexes of Fe(2+), iron oxidation reactions were first order in Fe(2+), polyphenol, and O(2), but gallate complexes show saturation behavior at much lower Fe(2+) concentrations. Thus, gallol-containing polyphenols promote iron oxidation at a significantly faster rate than analogous catechol-containing compounds, and iron oxidation rate also correlates strongly with polyphenol inhibition of DNA damage for polyphenol compounds with a single iron-binding moiety.


Assuntos
Antioxidantes/química , Flavonoides/química , Ferro/química , Fenóis/química , Elétrons , Cinética , Ligantes , Oxirredução , Polifenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...