Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 5(4)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30225343

RESUMO

Excessive noise exposure damages sensory hair cells, leading to permanent hearing loss. Zebrafish are a highly tractable model that have advanced our understanding of drug-induced hair cell death, yet no comparable model exists for noise exposure research. We demonstrate the utility of zebrafish as model to increase understanding of hair cell damage from acoustic trauma and develop protective therapies. We created an acoustic trauma system using underwater cavitation to stimulate lateral line hair cells. We found that acoustic stimulation resulted in exposure time- and intensity-dependent lateral line and saccular hair cell damage that is maximal at 48-72 h post-trauma. The number of TUNEL+ lateral line hair cells increased 72 h post-exposure, whereas no increase was observed in TUNEL+ supporting cells, demonstrating that acoustic stimulation causes hair cell-specific damage. Lateral line hair cells damaged by acoustic stimulation regenerate within 3 d, consistent with prior regeneration studies utilizing ototoxic drugs. Acoustic stimulation-induced hair cell damage is attenuated by pharmacological inhibition of protein synthesis or caspase activation, suggesting a requirement for translation and activation of apoptotic signaling cascades. Surviving hair cells exposed to acoustic stimulation showed signs of synaptopathy, consistent with mammalian studies. Finally, we demonstrate the feasibility of this platform to identify compounds that prevent acoustic trauma by screening a small redox library for protective compounds. Our data suggest that acoustic stimulation results in lateral line hair cell damage consistent with acoustic trauma research in mammals, providing a highly tractable model for high-throughput genetic and drug discovery studies.


Assuntos
Células Ciliadas Vestibulares , Perda Auditiva Provocada por Ruído , Sistema da Linha Lateral , Regeneração Nervosa/fisiologia , Estimulação Acústica , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Células Ciliadas Vestibulares/patologia , Células Ciliadas Vestibulares/fisiologia , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/patologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Larva , Sistema da Linha Lateral/lesões , Sistema da Linha Lateral/patologia , Sistema da Linha Lateral/fisiologia , Regeneração Nervosa/efeitos dos fármacos , Peixe-Zebra
2.
J Neurosci ; 37(12): 3264-3275, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28219984

RESUMO

Central patterns generators (CPGs) are neural circuits that drive rhythmic motor output without sensory feedback. Vertebrate CPGs are generally believed to operate in a top-down manner in which premotor interneurons activate motor neurons that in turn drive muscles. In contrast, the frog (Xenopus laevis) vocal CPG contains a functionally unexplored neuronal projection from the motor nucleus to the premotor nucleus, indicating a recurrent pathway that may contribute to rhythm generation. In this study, we characterized the function of this bottom-up connection. The X. laevis vocal CPG produces a 50-60 Hz "fast trill" song used by males during courtship. We recorded "fictive vocalizations" in the in vitro CPG from the laryngeal nerve while simultaneously recording premotor activity at the population and single-cell level. We show that transecting the motor-to-premotor projection eliminated the characteristic firing rate of premotor neurons. Silencing motor neurons with the intracellular sodium channel blocker QX-314 also disrupted premotor rhythms, as did blockade of nicotinic synapses in the motor nucleus (the putative location of motor neuron-to-interneuron connections). Electrically stimulating the laryngeal nerve elicited primarily IPSPs in premotor neurons that could be blocked by a nicotinic receptor antagonist. Our results indicate that an inhibitory signal, activated by motor neurons, is required for proper CPG function. To our knowledge, these findings represent the first example of a CPG in which precise premotor rhythms are tuned by motor neuron activity.SIGNIFICANCE STATEMENT Central pattern generators (CPGs) are neural circuits that produce rhythmic behaviors. In vertebrates, motor neurons are not commonly known to contribute to CPG function, with the exception of a few spinal circuits where the functional significance of motor neuron feedback is still poorly understood. The frog hindbrain vocal circuit contains a previously unexplored connection from the motor to premotor region. Our results indicate that motor neurons activate this bottom-up connection, and blocking this signal eliminates normal premotor activity. These findings may promote increased awareness of potential involvement of motor neurons in a wider range of CPGs, perhaps clarifying our understanding of network principles underlying motor behaviors in numerous organisms, including humans.


Assuntos
Potenciais de Ação/fisiologia , Neurônios Motores/fisiologia , Movimento/fisiologia , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Xenopus laevis/fisiologia , Animais , Geradores de Padrão Central/fisiologia , Córtex Motor/fisiologia
3.
Elife ; 52016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26824391

RESUMO

Random search is a behavioral strategy used by organisms from bacteria to humans to locate food that is randomly distributed and undetectable at a distance. We investigated this behavior in the nematode Caenorhabditis elegans, an organism with a small, well-described nervous system. Here we formulate a mathematical model of random search abstracted from the C. elegans connectome and fit to a large-scale kinematic analysis of C. elegans behavior at submicron resolution. The model predicts behavioral effects of neuronal ablations and genetic perturbations, as well as unexpected aspects of wild type behavior. The predictive success of the model indicates that random search in C. elegans can be understood in terms of a neuronal flip-flop circuit involving reciprocal inhibition between two populations of stochastic neurons. Our findings establish a unified theoretical framework for understanding C. elegans locomotion and a testable neuronal model of random search that can be applied to other organisms.

4.
Behav Brain Res ; 268: 213-21, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24747661

RESUMO

FoxP2 is a highly conserved vertebrate transcription factor known for its importance in human speech and language production. Disruption of FoxP2 in several vertebrate models indicates a conserved functional role for this gene in both sound production and motor coordination. Although FoxP2 is known to be strongly expressed in brain regions important for motor coordination, little is known about FoxP2's role in the nervous system. The recent discovery of the well-conserved Drosophila melanogaster homolog, FoxP, provides an opportunity to study the role of this crucial gene in an invertebrate model. We hypothesized that, like FoxP2, Drosophila FoxP is important for behaviors requiring fine motor coordination. We used targeted RNA interference to reduce expression of FoxP and assayed the effects on a variety of adult behaviors. Male flies with reduced FoxP expression exhibit decreased levels of courtship behavior, altered pulse-song structure, and sex-specific motor impairments in walking and flight. Acute disruption of synaptic activity in FoxP expressing neurons using a temperature-sensitive shibire allele dramatically impaired motor coordination. Utilizing a GFP reporter to visualize FoxP in the fly brain reveals expression in relatively few neurons in distributed clusters within the larval and adult CNS, including distinct labeling of the adult protocerebral bridge - a section of the insect central complex known to be important for motor coordination and thought to be homologous to areas of the vertebrate basal ganglia. Our results establish the necessity of this gene in motor coordination in an invertebrate model and suggest a functional homology with vertebrate FoxP2.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Atividade Motora/fisiologia , Vocalização Animal/fisiologia , Animais , Animais Geneticamente Modificados , Encéfalo/fisiologia , Corte , Proteínas de Drosophila/genética , Feminino , Voo Animal/fisiologia , Fatores de Transcrição Forkhead/genética , Técnicas de Silenciamento de Genes , Masculino , Neurônios/fisiologia , Interferência de RNA , Caracteres Sexuais , Transmissão Sináptica/fisiologia , Caminhada/fisiologia
5.
PLoS One ; 6(9): e24666, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21969859

RESUMO

Non-invasive recording in untethered animals is arguably the ultimate step in the analysis of neuronal function, but such recordings remain elusive. To address this problem, we devised a system that tracks neuron-sized fluorescent targets in real time. The system can be used to create virtual environments by optogenetic activation of sensory neurons, or to image activity in identified neurons at high magnification. By recording activity in neurons of freely moving C. elegans, we tested the long-standing hypothesis that forward and reverse locomotion are generated by distinct neuronal circuits. Surprisingly, we found motor neurons that are active during both types of locomotion, suggesting a new model of locomotion control in C. elegans. These results emphasize the importance of recording neuronal activity in freely moving animals and significantly expand the potential of imaging techniques by providing a mean to stabilize fluorescent targets.


Assuntos
Caenorhabditis elegans/fisiologia , Eletrofisiologia/métodos , Neurônios/patologia , Animais , Comportamento Animal , Cálcio/química , Corantes Fluorescentes/farmacologia , Locomoção , Modelos Neurológicos , Atividade Motora/fisiologia , Neurônios Motores/metabolismo , Movimento , Osmose , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...