Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bio Protoc ; 14(11): e5012, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38873013

RESUMO

Gene editing technologies have revolutionized plant molecular biology, providing powerful tools for precise gene manipulation for understanding function and enhancing or modifying agronomically relevant traits. Among these technologies, the CRISPR-Cas9 system has emerged as a versatile and widely accepted strategy for targeted gene manipulation. This protocol provides detailed, step-by-step instructions for implementing CRISPR-Cas9 genome editing in tomato plants, with a specific focus in generating knockout lines for a target gene. For that, the guide RNA should preferentially be designed within the first exon downstream and closer to the start codon. The edited plants obtained are free of transgene cassette for expression of the CRISPR-Cas9 machinery. Key features • Two sgRNAs employed. • Takes 6-12 months to have an edited transgene-free plant. • Setup in tomato.

2.
Plant Sci ; 340: 111971, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38160760

RESUMO

Phospholipase C (PLC) plays a key role in lipid signaling during plant development and stress responses. PLC activation is one of the earliest responses during pathogen perception. Arabidopsis thaliana contains seven PLC encoding genes (AtPLC1 to AtPLC7) and two pseudogenes (AtPLC8 and AtPLC9), being AtPLC2 the most abundant isoform with constitutive expression in all plant organs. PLC has been linked to plant defense signaling, in particular to the production of reactive oxygen species (ROS). Previously, we demonstrated that AtPLC2 is involved in ROS production via the NADPH oxidase isoforms RBOHD activation during stomata plant immunity. Here we studied the role of AtPLC2 on plant resistance against the necrotrophic fungus Botrytis cinerea, a broad host-range and serious agricultural pathogen. We show that the AtPLC2-silenced (amiR PLC2) or null mutant (plc2-1) plants developed smaller B. cinerea lesions. Moreover, plc2-1 showed less ROS production and an intensified SA-dependent signaling upon infection, indicating that B. cinerea uses AtPLC2-triggered responses for a successful proliferation. Therefore, AtPLC2 is a susceptibility (S) gene that facilitates B. cinerea infection and proliferation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/microbiologia , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/metabolismo , Fosfatidilinositóis , Proliferação de Células , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Ciclopentanos/metabolismo
3.
Planta ; 257(6): 117, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173533

RESUMO

MAIN CONCLUSION: CRISPR/Cas9-mediated Phospholipase C2 knock-out tomato plants are more resistant to Botrytis cinerea than wild-type plants, with less ROS and an increase and reduction of (JA) and (SA)-response marker genes, respectively. Genome-editing technologies allow non-transgenic site-specific mutagenesis of crops, offering a viable alternative to traditional breeding methods. In this study we used CRISPR/Cas9 to inactivate the tomato Phospholipase C2 gene (SlPLC2). Plant PLC activation is one of the earliest responses triggered by different pathogens regulating plant responses that, depending on the plant-pathogen interaction, result in plant resistance or susceptibility. The tomato (Solanum lycopersicum) PLC gene family has six members, named from SlPLC1 to SlPLC6. We previously showed that SlPLC2 transcript levels increased upon xylanase infiltration (fungal elicitor) and that SlPLC2 participates in plant susceptibility to Botrytis cinerea. An efficient strategy to control diseases caused by pathogens is to disable susceptibility genes that facilitate infection. We obtained tomato SlPLC2-knock-out lines with decreased ROS production upon B. cinerea challenge. Since this fungus requires ROS-induced cell death to proliferate, SlPLC2-knock-out plants showed an enhanced resistance with smaller necrotic areas and reduced pathogen proliferation. Thus, we obtained SlPLC2 loss-of-function tomato lines more resistant to B. cinerea by means of CRISPR/Cas9 genome editing technology.


Assuntos
Solanum lycopersicum , Fosfolipases Tipo C , Fosfolipases Tipo C/metabolismo , Solanum lycopersicum/genética , Sistemas CRISPR-Cas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxilipinas/metabolismo , Melhoramento Vegetal , Botrytis/metabolismo , Fosfolipases/genética , Fosfolipases/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas
4.
Plant Direct ; 6(9): e437, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36091879

RESUMO

Sulforaphane (SFN) is an isothiocyanate-type phytomolecule present in crucifers, which is mainly synthesized in response to biotic stress. In animals, SFN incorporated in the diet has anticancer properties among others. The mechanism of action and signaling are well described in animals; however, little is known in plants. The goal in the present study is to elucidate components of the SFN signaling pathway, particularly the production of reactive oxygen species (ROS), and its effect on the transcriptome. Our results showed that in Arabidopsis, SFN causes ROS production exclusively through the action of the NADPH oxidase RBOH isoform D that requires calcium as a signaling component for the ROS production. To add to this, we also analyzed the effect of SFN on the transcriptome by RNAseq. We observed the highest expression increase for heat shock proteins (HSP) genes and also for genes associated with the response to oxidative stress. The upregulation of several genes linked to the biotic stress response confirms the interplay between SFN and this stress. In addition, SFN increases the levels of transcripts related to the response to abiotic stress, as well as phytohormones. Taken together, these results indicate that SFN induces an oxidative burst leading to signaling events. This oxidative burst may cause the increase of the expression of genes such as heat shock proteins to restore cellular homeostasis and genes that codify possible components of the signaling pathway and putative effectors.

5.
Planta ; 254(6): 120, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34773515

RESUMO

MAIN CONCLUSION: Nitro fatty acids (NO2-FA)have relevant physiological roles as signaling molecules in biotic and abiotic stress, growth, and development, but the mechanism of action remains controversial. The two main mechanisms involving nitric oxide release and thiol modification are discussed. Fatty acids (FAs) are major components of membranes and contribute to cellular energetic demands. Besides, FAs are precursors of signaling molecules, including oxylipins and other oxidized fatty acids derived from the activity of lipoxygenases. In addition, non-canonical modified fatty acids, such as nitro-fatty acids (NO2-FAs), are formed in animals and plants. The synthesis NO2-FAs involves a nitration reaction between unsaturated fatty acids and reactive nitrogen species (RNS). This review will focus on recent findings showing that, in plants, NO2-FAs such as nitro-linolenic acid (NO2-Ln) and nitro-oleic acid (NO2-OA) have relevant physiological roles as signaling molecules in biotic and abiotic stress, growth, and development. Moreover, since there is controversy on mechanisms of action of NO2-FAs as signaling molecules, we will provide evidence showing why this aspect needs further evaluation.


Assuntos
Ácidos Graxos , Óxido Nítrico , Animais , Fenômenos Fisiológicos Vegetais , Espécies Reativas de Nitrogênio , Transdução de Sinais
6.
Front Plant Sci ; 11: 1059, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793255

RESUMO

Nitric oxide (NO) is a second messenger that regulates a broad range of physiological processes in plants. NO-derived molecules called reactive nitrogen species (RNS) can react with unsaturated fatty acids generating nitrated fatty acids (NO2-FA). NO2-FA work as signaling molecules in mammals where production and targets have been described under different stress conditions. Recently, NO2-FAs were detected in plants, however their role(s) on plant physiological processes is still poorly known. Although in this work NO2-OA has not been detected in any Arabidopsis seedling tissue, here we show that exogenous application of nitro-oleic acid (NO2-OA) inhibits Arabidopsis primary root growth; this inhibition is not likely due to nitric oxide (NO) production or impaired auxin or cytokinin root responses. Deep analyses showed that roots incubated with NO2-OA had a lower cell number in the division area. Although this NO2-FA did not affect the hormonal signaling mechanisms maintaining the stem cell niche, plants incubated with NO2-OA showed a reduction of cell division in the meristematic area. Therefore, this work shows that the exogenous application of NO2-OA inhibits mitotic processes subsequently reducing primary root growth.

7.
J Plant Physiol ; 246-247: 153128, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32065921

RESUMO

Nitrated fatty acids (NO2-FAs) are important signaling molecules in mammals. NO2-FAs are formed by the addition reaction of nitric oxide- and nitrite-derived nitrogen dioxide with unsaturated fatty acid double bonds. The study of NO2-FAs in plant systems constitutes an interesting and emerging area. The presence of NO2-FA has been reported in olives, peas, rice and Arabidopsis. To gain a better understanding of the role of NO2-FA on plant physiology, we analyzed the effects of exogenous application of nitro-oleic acid (NO2-OA). In tomato cell suspensions we found that NO2-OA induced reactive oxygen species (ROS) production in a dose-dependent manner via activation of NADPH oxidases, a mechanism that requires calcium entry from the extracellular compartment and protein kinase activation. In tomato and Arabidopsis leaves, NO2-OA treatments induced two waves of ROS production, resembling plant defense responses. Arabidopsis NADPH oxidase mutants showed that NADPH isoform D (RBOHD) was required for NO2-OA-induced ROS production. In addition, on Arabidopsis isolated epidermis, NO2-OA induced stomatal closure via RBOHD and F. Altogether, these results indicate that NO2-OA triggers NADPH oxidase activation revealing a new signaling role in plants.


Assuntos
Arabidopsis/metabolismo , NADPH Oxidases/metabolismo , Ácido Oleico/farmacologia , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Solanum lycopersicum/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Células Cultivadas , Solanum lycopersicum/efeitos dos fármacos , Imunidade Vegetal/efeitos dos fármacos , Imunidade Vegetal/imunologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia
8.
Front Plant Sci ; 9: 1721, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30542361

RESUMO

Phospholipase C (PLC) has been suggested to play important roles in plant stress and development. To increase our understanding of PLC signaling in plants, we have started to analyze knock-out (KO), knock-down (KD) and overexpression mutants of Arabidopsis thaliana, which contains nine PLCs. Earlier, we characterized PLC2, PLC3 and PLC5. Here, the role of PLC7 is functionally addressed. Promoter-GUS analyses revealed that PLC7 is specifically expressed in the phloem of roots, leaves and flowers, and is also present in trichomes and hydathodes. Two T-DNA insertion mutants were obtained, i.e., plc7-3 being a KO- and plc7-4 a KD line. In contrast to earlier characterized phloem-expressed PLC mutants, i.e., plc3 and plc5, no defects in primary- or lateral root development were found for plc7 mutants. Like plc3 mutants, they were less sensitive to ABA during stomatal closure. Double-knockout plc3 plc7 lines were lethal, but plc5 plc7 (plc5/7) double mutants were viable, and revealed several new phenotypes, not observed earlier in the single mutants. These include a defect in seed mucilage, enhanced leaf serration, and an increased tolerance to drought. Overexpression of PLC7 enhanced drought tolerance too, similar to what was earlier found for PLC3-and PLC5 overexpression. In vivo 32Pi-labeling of seedlings and treatment with sorbitol to mimic drought stress, revealed stronger PIP2 responses in both drought-tolerant plc5/7 and PLC7-OE mutants. Together, these results show novel functions for PLC in plant stress and development. Potential molecular mechanisms are discussed.

9.
Plant Cell Physiol ; 59(10): 2004-2019, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107538

RESUMO

Phospholipase C (PLC) is a well-known signaling enzyme in metazoans that hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol 1,4,5-trisphosphate and diacylglycerol as second messengers involved in mutiple processes. Plants contain PLC too, but relatively little is known about its function there. The model system Arabidopsis thaliana contains nine PLC genes. Reversed genetics have implicated several roles for PLCs in plant development and stress signaling. Here, PLC5 is functionally addressed. Promoter-ß-glucuronidase (GUS) analyses revealed expression in roots, leaves and flowers, predominantly in vascular tissue, most probably phloem companion cells, but also in guard cells, trichomes and root apical meristem. Only one plc5-1 knock-down mutant was obtained, which developed normally but grew more slowly and exhibited reduced primary root growth and decreased lateral root numbers. These phenotypes could be complemented by expressing the wild-type gene behind its own promoter. Overexpression of PLC5 (PLC5-OE) using the UBQ10 promoter resulted in reduced primary and secondary root growth, stunted root hairs, decreased stomatal aperture and improved drought tolerance. PLC5-OE lines exhibited strongly reduced phosphatidylinositol 4-monophosphate (PIP) and PIP2 levels and increased amounts of phosphatidic acid, indicating enhanced PLC activity in vivo. Reduced PIP2 levels and stunted root hair growth of PLC5-OE seedlings could be recovered by inducible overexpression of a root hair-specific PIP 5-kinase, PIP5K3. Our results show that PLC5 is involved in primary and secondary root growth and that its overexpression improves drought tolerance. Independently, we provide new evidence that PIP2 is essential for the polar tip growth of root hairs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Secas , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento
10.
Plant Physiol ; 176(3): 2532-2542, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29438048

RESUMO

Hydrogen sulfide (H2S) is an important gaseous signaling molecule in plants that participates in stress responses and development. l-Cys desulfhydrase 1, one of the enzymatic sources of H2S in plants, participates in abscisic acid-induced stomatal closure. We combined pharmacological and genetic approaches to elucidate the involvement of H2S in stomatal closure and the interplay between H2S and other second messengers of the guard cell signaling network, such as hydrogen peroxide (H2O2) and phospholipase D (PLD)-derived phosphatidic acid in Arabidopsis (Arabidopsis thaliana). Both NADPH oxidase isoforms, respiratory burst oxidase homolog (RBOH)D and RBOHF, were required for H2S-induced stomatal closure. In vivo imaging using the cytosolic ratiometric fluorescent biosensor roGFP2-Orp1 revealed that H2S stimulates H2O2 production in Arabidopsis guard cells. Additionally, we observed an interplay between H2S and PLD activity in the regulation of reactive oxygen species production and stomatal movement. The PLDα1 and PLDδ isoforms were required for H2S-induced stomatal closure, and most of the H2S-dependent H2O2 production required the activity of PLDα1. Finally, we showed that H2S induced increases in the PLDδ-derived phosphatidic acid levels in guard cells. Our results revealed the involvement of H2S in the signaling network that controls stomatal closure, and suggest that H2S regulates NADPH oxidase and PLD activity in guard cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Técnicas Biossensoriais , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mutação , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Células Vegetais/metabolismo , Estômatos de Plantas , Plantas Geneticamente Modificadas , Transdução de Sinais
11.
Plant Cell Physiol ; 59(3): 469-486, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29309666

RESUMO

Phospholipase C (PLC) is well known for its role in animal signaling, where it generates the second messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), by hydrolyzing the minor phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP2), upon receptor stimulation. In plants, PLC's role is still unclear, especially because the primary targets of both second messengers are lacking, i.e. the ligand-gated Ca2+ channel and protein kinase C, and because PIP2 levels are extremely low. Nonetheless, the Arabidopsis genome encodes nine PLCs. We used a reversed-genetic approach to explore PLC's function in Arabidopsis, and report here that PLC3 is required for proper root development, seed germination and stomatal opening. Two independent knock-down mutants, plc3-2 and plc3-3, were found to exhibit reduced lateral root densities by 10-20%. Mutant seeds germinated more slowly but were less sensitive to ABA to prevent germination. Guard cells of plc3 were also compromised in ABA-dependent stomatal closure. Promoter-ß-glucuronidase (GUS) analyses confirmed PLC3 expression in guard cells and germinating seeds, and revealed that the majority is expressed in vascular tissue, most probably phloem companion cells, in roots, leaves and flowers. In vivo 32Pi labeling revealed that ABA stimulated the formation of PIP2 in germinating seeds and guard cell-enriched leaf peels, which was significantly reduced in plc3 mutants. Overexpression of PLC3 had no effect on root system architecture or seed germination, but increased the plant's tolerance to drought. Our results provide genetic evidence for PLC's involvement in plant development and ABA signaling, and confirm earlier observations that overexpression increases drought tolerance. Potential molecular mechanisms for the above observations are discussed.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Fosfoinositídeo Fosfolipase C/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Sementes/crescimento & desenvolvimento , Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Germinação/genética , Mutação com Perda de Função , Pressão Osmótica/efeitos dos fármacos , Ácidos Fosfatídicos/metabolismo , Fosfatidilinositol 4,5-Difosfato , Fosfoinositídeo Fosfolipase C/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
12.
Plant Physiol ; 175(2): 970-981, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28827453

RESUMO

The activation of phosphoinositide-specific phospholipase C (PI-PLC) is one of the earliest responses triggered by the recognition of several microbe-associated molecular patterns (MAMPs) in plants. The Arabidopsis (Arabidopsis thaliana) PI-PLC gene family is composed of nine members. Previous studies suggested a role for PLC2 in MAMP-triggered immunity, as it is rapidly phosphorylated in vivo upon treatment with the bacterial MAMP flg22. Here, we analyzed the role of PLC2 in plant immunity using an artificial microRNA to silence PLC2 expression in Arabidopsis. We found that PLC2-silenced plants are more susceptible to the type III secretion system-deficient bacterial strain Pseudomonas syringae pv tomato (Pst) DC3000 hrcC- and to the nonadapted pea (Pisum sativum) powdery mildew Erysiphe pisi However, PLC2-silenced plants display normal susceptibility to virulent (Pst DC3000) and avirulent (Pst DC3000 AvrRPM1) P. syringae strains, conserving typical hypersensitive response features. In response to flg22, PLC2-silenced plants maintain wild-type mitogen-activated protein kinase activation and PHI1, WRKY33, and FRK1 immune marker gene expression but have reduced reactive oxygen species (ROS)-dependent responses such as callose deposition and stomatal closure. Accordingly, the generation of ROS upon flg22 treatment is compromised in the PLC2-defficient plants, suggesting an effect of PLC2 in a branch of MAMP-triggered immunity and nonhost resistance that involves early ROS-regulated processes. Consistently, PLC2 associates with the NADPH oxidase RBOHD, suggesting its potential regulation by PLC2.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NADPH Oxidases/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal , Fosfolipases Tipo C/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Ascomicetos/fisiologia , Inativação Gênica , Glucanos/metabolismo , MicroRNAs/genética , Proteínas Quinases Ativadas por Mitógeno/genética , NADPH Oxidases/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Fosfolipases Tipo C/genética
13.
Planta ; 245(4): 717-728, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27999988

RESUMO

MAIN CONCLUSION: AtPLC2 is an essential gene in Arabidopsis, since it is required for female gametogenesis and embryo development. AtPLC2 might play a role in cell division during embryo-sac development and early embryogenesis. Phosphoinositide-specific phospholipase C (PI-PLC) plays an important role in signal transduction during plant development and in the response to various biotic- and abiotic stresses. The Arabidopsis PI-PLC gene family is composed of nine members, named PLC1 to PLC9. Here, we report that PLC2 is involved in female gametophyte development and early embryogenesis. Using two Arabidopsis allelic T-DNA insertion lines with different phenotypic penetrations, we observed both female gametophytic defects and aberrant embryos. For the plc2-1 mutant (Ws background), no homozygous plants could be recovered in the offspring from self-pollinated plants. Nonetheless, plc2-1 hemizygous mutants are affected in female gametogenesis, showing embryo sacs arrested at early developmental stages. Allelic hemizygous plc2-2 mutant plants (Col-0 background) present reduced seed set and embryos arrested at the pre-globular stage with abnormal patterns of cell division. A low proportion (0.8%) of plc2-2 homozygous mutants was found to escape lethality and showed morphological defects and disrupted megagametogenesis. PLC2-promoter activity was observed during early megagametogenesis, and after fertilization in the embryo proper. Immunolocalization studies in early stage embryos revealed that PLC2 is restricted to the plasma membrane. Altogether, these results establish a role for PLC2 in both reproductive- and embryo development, presumably by controlling mitosis and/or the formation of cell-division planes.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Gametogênese Vegetal/fisiologia , Sementes/crescimento & desenvolvimento , Fosfolipases Tipo C/fisiologia , Arabidopsis/enzimologia , Arabidopsis/ultraestrutura , Western Blotting , Glucuronidase/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Óvulo Vegetal/enzimologia , Óvulo Vegetal/fisiologia , Óvulo Vegetal/ultraestrutura , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/enzimologia
15.
Plant Signal Behav ; 10(11): e1089371, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26340512

RESUMO

Phospholipase D (PLD) is involved in different plant processes, ranging from responses to abiotic and biotic stress to plant development. Phospholipase Dδ (PLDδ) is activated in dehydration and salt stress, producing the lipid second messenger phosphatidic acid. In this work we show that pldδ Arabidopsis mutants were more tolerant to severe drought than wild-type plants. PLDδ has been shown to be required for ABA regulation of stomatal closure of isolated epidermal peels. However, there was no significant difference in stomatal conductance at the whole plant level between wild-type and pldδ mutants. Since PLD hydrolyses structural phospholipids, then we looked at membrane integrity. Ion leakage measurements showed that during dehydration of leaf discs pldδ mutant has less membrane degradation compared to the wild-type. We further analyzed the mutants and showed that pldδ have higher mRNA levels of RAB18 and RD29A compared to wild-type plants under normal growth conditions. Transient expression of AtPLDδ in Nicotiana benthamiana plants induced a wilting phenotype. These findings suggest that, in wt plants PLDδ disrupt membranes in severe drought stress and, in the absence of the protein (PLDδ knock-out) might drought-prime the plants, making them more tolerant to severe drought stress. The results are discussed in relation to PLDδ role in guard cell signaling and drought tolerance.


Assuntos
Adaptação Fisiológica , Secas , Técnicas de Inativação de Genes , Mutação/genética , Fosfolipase D/genética , Estresse Fisiológico , Ácido Abscísico/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Fenótipo , Fosfolipase D/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Estresse Fisiológico/efeitos dos fármacos
16.
J Plant Physiol ; 171(11): 959-65, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24913053

RESUMO

The tomato [Solanum lycopersicum (Sl)] phosphatidylinositol-phospholipase C (PI-PLC) gene family is composed of six members, named SlPLC1 to SlPLC6, differentially regulated upon pathogen attack. We have previously shown that the fungal elicitor xylanase rapidly induces nitric oxide (NO), which is required for PI-PLCs activity and downstream defense responses in tomato cell suspensions. Here, we show that all six SlPLC genes are expressed in tomato cell suspensions. Treatment of the cells with xylanase induces an early increase in SlPLC5 transcript levels, followed by a raise of the amount of SlPLC2 transcripts. The production of NO is required to augment SlPLC5 transcript levels in xylanase-treated tomato cells. Xylanase also induces SlPLC2 and SlPLC5 transcript levels in planta. We knocked-down the expression of SlPLC2 and SlPLC5 by virus-induced gene silencing. We found that SlPLC2 is required for xylanase-induced expression of the defense-related genes PR1 and HSR203J.


Assuntos
Endo-1,4-beta-Xilanases/metabolismo , Solanum lycopersicum/classificação , Solanum lycopersicum/enzimologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Ácidos Fosfatídicos/metabolismo , Proteínas de Plantas/metabolismo
17.
Methods Mol Biol ; 1009: 219-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23681537

RESUMO

Phospholipase D (PLD) hydrolyzes structural phospholipids like phosphatidylcholine (PC) and phosphatidylethanolamine (PE) into phosphatidic acid (PA) and free choline/ethanolamine. In plants, this activity can be stimulated by a wide variety of biotic and abiotic stresses (Li et al., Biochim Biophys Acta 1791:927-935, 2009; Testerink and Munnik, J Exp Bot 62(7):2349-2361, 2011). This chapter describes a protocol for the measurement of PLD activity in vivo. The protocol takes advantage of a unique property of PLD, i.e., its ability to substitute a primary alcohol, such as 1-butanol, for water in the hydrolytic reaction. This transphosphatidylation reaction results in the formation of phosphatidylbutanol (PBut), which is a specific and unique reporter for PLD activity. The assay is highly sensitive for detecting PLD activity in vivo, following stimulation of intact plant cells, seedlings, and tissues, being a valuable method for studying the regulation of plant PLD activity in vivo.


Assuntos
Ensaios Enzimáticos/métodos , Fosfolipase D/metabolismo , Arabidopsis/enzimologia , Cromatografia em Camada Fina , Células Vegetais/enzimologia , Estômatos de Plantas/citologia , Estômatos de Plantas/enzimologia , Plântula/enzimologia , Suspensões , Nicotiana/citologia , Nicotiana/enzimologia , Vicia/enzimologia
18.
Planta ; 236(6): 1899-907, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22932846

RESUMO

Nitric oxide (NO) has recently emerged as a second messenger involved in the complex network of signaling events that regulate stomatal closure. Little is known about the signaling events occurring downstream of NO. Previously, we demonstrated the involvement of phospholipase D (PLD) in NO signaling during stomatal closure. PLDδ, one of the 12 Arabidopsis PLDs, is involved in dehydration stress responses. To investigate the role of PLDδ in NO signaling in guard cells, we analyzed guard cells responses using Arabidopsis wild type and two independent pldδ single mutants. In this work, we show that pldδ mutants failed to close the stomata in response to NO. Treatments with phosphatidic acid, the product of PLD activity, induced stomatal closure in pldδ mutants. Abscisic acid (ABA) signaling in guard cells involved H(2)O(2) and NO production, both required for ABA-induced stomatal closure. pldδ guard cells produced similar NO and H(2)O(2) levels as the wild type in response to ABA. However, ABA- or H(2)O(2)-induced stomatal closure was impaired in pldδ plants. These data indicate that PLDδ is downstream of NO and H(2)O(2) in ABA-induced stomatal closure.


Assuntos
Ácido Abscísico/farmacologia , Arabidopsis/enzimologia , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Fosfolipase D/metabolismo , Estômatos de Plantas/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desidratação , Técnicas de Inativação de Genes , Mutagênese Insercional , Ácidos Fosfatídicos/farmacologia , Fosfolipase D/genética , Estômatos de Plantas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
19.
Planta ; 234(4): 845-55, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21643989

RESUMO

The second messenger nitric oxide (NO), phosphatidic acid (PA) and reactive oxygen species (ROS) are involved in the plant defense response during plant-pathogen interactions. NO has been shown to participate in PA production in response to the pathogen-associated molecular pattern xylanase in tomato cell suspensions. Defense responses downstream of PA include ROS production. The goal of this work was to study the signaling mechanisms involved in PA production during the defense responses triggered by xylanase and mediated by NO in the suspension-cultured tomato cells. We analyzed the participation of protein kinases, guanylate cyclase and the NO-mediated posttranslational modification S-nitrosylation, by means of pharmacology and biochemistry. We showed that NO, PA and ROS levels are significantly diminished by treatment with the general protein kinase inhibitor staurosporine. This indicates that xylanase-induced protein phosphorylation events might be the important components leading to NO formation, and hence for the downstream regulation of PA and ROS levels. When assayed, a guanylate cyclase inhibitor or a cGMP analog did not alter the PA accumulation. These results suggest that a cGMP-mediated pathway is not involved in xylanase-induced PA formation. Finally, the inhibition of protein S-nitrosylation did not affect NO formation but compromised PA and ROS production. Data collectively indicate that upon xylanase perception, cells activate a protein kinase pathway required for NO formation and that, S-nitrosylation-dependent mechanisms are involved in downstream signaling leading to PA and ROS.


Assuntos
Óxido Nítrico/metabolismo , Ácidos Fosfatídicos/metabolismo , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo , Solanum lycopersicum/enzimologia , Xilosidases/metabolismo , Técnicas de Cultura de Células , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Interações Hospedeiro-Patógeno , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/imunologia , Solanum lycopersicum/fisiologia , Óxido Nítrico/imunologia , Ácidos Fosfatídicos/imunologia , Fosforilação/efeitos dos fármacos , Imunidade Vegetal , Proteínas Quinases/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Espécies Reativas de Oxigênio/imunologia , Transdução de Sinais , Estaurosporina/farmacologia , Tionucleotídeos/farmacologia
20.
J Plant Physiol ; 168(6): 534-9, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20951469

RESUMO

Nitric oxide (NO) and the lipid second messenger phosphatidic acid (PA) are involved in plant defense responses during plant-pathogen interactions. NO has been shown to be involved in the induction of PA production in response to the pathogen associated molecular pattern (PAMP) xylanase in tomato cells. It was shown that NO is critical for PA production induced via phospholipase C (PLC) in concerted action with diacylglycerol kinase (DGK) but not for the xylanase-induced PA via phospholipase D (PLD). In order to study whether this is a general phenomenon during PAMP perception or if it is particular for xylanase, we studied the effect of the PAMP chitosan in tomato cell suspensions. We observed a rapid NO production in tomato cells treated with chitosan. Chitosan induced the formation of PA by activating both PLD and PLC/DGK. The activation of either phospholipase-mediated signaling pathway was inhibited in cells treated with the NO scavenger cPTIO. This indicates that NO is required for PA generation via both the PLD and PLC/DGK pathway during plant defense response in chitosan elicited cells. Responses downstream PA were studied. PLC inhibitors neomycin and U73122 inhibited chitosan-induced ROS production. Differences between xylanase and chitosan-induced phospholipid signaling pathways are discussed.


Assuntos
Quitosana/metabolismo , Óxido Nítrico/metabolismo , Ácidos Fosfatídicos/metabolismo , Transdução de Sinais , Solanum lycopersicum/enzimologia , Diacilglicerol Quinase/metabolismo , Estrenos/metabolismo , Neomicina/metabolismo , Óxido Nítrico/química , Fosfolipase D/metabolismo , Fosfolipídeos/metabolismo , Pirrolidinonas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...