Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 5564, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689816

RESUMO

Two major earthquakes (MW 7.8 and MW 7.7) ruptured left-lateral strike-slip faults of the East Anatolian Fault Zone (EAFZ) on February 6, 2023, causing >59,000 fatalities and ~$119B in damage in southeastern Türkiye and northwestern Syria. Here we derived kinematic rupture models for the two events by inverting extensive seismic and geodetic observations using complex 5-6 segment fault models constrained by satellite observations and relocated aftershocks. The larger event nucleated on a splay fault, and then propagated bilaterally ~350 km along the main EAFZ strand. The rupture speed varied from 2.5-4.5 km/s, and peak slip was ~8.1 m. 9-h later, the second event ruptured ~160 km along the curved northern EAFZ strand, with early bilateral supershear rupture velocity (>4 km/s) followed by a slower rupture speed (~3 km/s). Coulomb Failure stress increase imparted by the first event indicates plausible triggering of the doublet aftershock, along with loading of neighboring faults.

3.
Nat Commun ; 14(1): 2015, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037813

RESUMO

Strong tsunami excitation from slow rupture of shallow subduction zone faults is recognized as a key concern for tsunami hazard assessment. Three months after the 22 July 2020 magnitude 7.8 thrust earthquake struck the plate boundary below the Shumagin Islands, Alaska, a magnitude 7.6 aftershock ruptured with complex intraplate faulting. Despite the smaller size and predominantly strike-slip faulting mechanism inferred from seismic waves for the aftershock, it generated much larger tsunami waves than the mainshock. Here we show through detailed analysis of seismic, geodetic, and tsunami observations of the aftershock that the event implicated unprecedented source complexity, involving weakly tsunamigenic fast rupture of two intraplate faults located below and most likely above the plate boundary, along with induced strongly tsunamigenic slow thrust slip on a third fault near the shelf break likely striking nearly perpendicular to the trench. The thrust slip took over 5 min, giving no clear expression in seismic or geodetic observations while producing the sizeable far-field tsunami.

4.
Sci Adv ; 9(2): eadd4931, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36630503

RESUMO

Rapid venting of volcanic material during the 15 January 2022 Tonga eruption generated impulsive downward reaction forces on the Earth of ~2.0 × 1013 N that radiated seismic waves observed throughout the planet, with ~25 s source bursts persisting for ~4.5 hours. The force time history is determined by analysis of teleseismic P waves and Rayleigh waves with periods approximately <50 s, providing insight into the overall volcanic eruption process. The atmospheric acoustic-gravity Lamb wave expanding from the eruption produced broadband ground motions when transiting land, along with driven and conventional tsunami waves. Atmospheric standing acoustic waves near the source produced oscillatory peak forces as large as 4 × 1012 N, exciting resonant solid Earth Rayleigh wave motions at frequencies of 3.7 and 4.6 mHz.

5.
Proc Natl Acad Sci U S A ; 119(51): e2216843119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36512498

RESUMO

So far in this century, six very large-magnitude earthquakes (MW ≥ 7.8) have ruptured separate portions of the subduction zone plate boundary of western South America along Ecuador, Peru, and Chile. Each source region had last experienced a very large earthquake from 74 to 261 y earlier. This history led to their designation in advance as seismic gaps with potential to host future large earthquakes. Deployments of geodetic and seismic monitoring instruments in several of the seismic gaps enhanced resolution of the subsequent faulting processes, revealing preevent patterns of geodetic slip deficit accumulation and heterogeneous coseismic slip on the megathrust fault. Localized regions of large slip, or asperities, appear to have influenced variability in how each source region ruptured relative to prior events, as repeated ruptures have had similar, but not identical slip distributions. We consider updated perspectives of seismic gaps, asperities, and geodetic locking to assess current very large earthquake hazard along the South American subduction zone, noting regions of particular concern in northern Ecuador and Colombia (1958/1906 rupture zone), southeastern Peru (southeasternmost 1868 rupture zone), north Chile (1877 rupture zone), and north-central Chile (1922 rupture zone) that have large geodetic slip deficit measurements and long intervals (from 64 to 154 y) since prior large events have struck those regions. Expanded geophysical measurements onshore and offshore in these seismic gaps may provide critical information about the strain cycle and fault stress buildup late in the seismic cycle in advance of the future great earthquakes that will eventually strike each region.


Assuntos
Terremotos , Chile , Equador , Peru , Colômbia
6.
Science ; 377(6601): 30-31, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35771926

RESUMO

The atmospheric wave from the Tonga eruption drove faster-than-normal tsunamis.


Assuntos
Tsunamis , Tonga
7.
Sci Adv ; 6(3): eaaz1377, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31998846

RESUMO

On 22 December 2018, a devastating tsunami struck Sunda Strait, Indonesia without warning, leaving 437 dead and thousands injured along the western Java and southern Sumatra coastlines. Synthetic aperture radar and broadband seismic observations demonstrate that a small, <~0.2 km3 landslide on the southwestern flank of the actively erupting volcano Anak Krakatau generated the tsunami. The landslide did not produce strong short-period seismic waves; thus, precursory ground shaking did not provide a tsunami warning. The source of long-period ground motions during the landslide can be represented as a 12° upward-dipping single-force directed northeastward, with peak magnitude of ~6.1 × 1011 N and quasi-sinusoidal time duration of ~70 s. Rapid quantification of a landslide source process by long-period seismic wave inversions for moment-tensor and single-force parameterizations using regional seismic data available within ~8 min can provide a basis for future fast tsunami warnings, as is also the case for tsunami earthquakes.

8.
Sci Adv ; 4(3): eaao4915, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29750186

RESUMO

Despite the surge of great earthquakes along subduction zones over the last decade and advances in observations and analysis techniques, it remains unclear whether earthquake complexity is primarily controlled by persistent fault properties or by dynamics of the failure process. We introduce the radiated energy enhancement factor (REEF), given by the ratio of an event's directly measured radiated energy to the calculated minimum radiated energy for a source with the same seismic moment and duration, to quantify the rupture complexity. The REEF measurements for 119 large [moment magnitude (Mw) 7.0 to 9.2] megathrust earthquakes distributed globally show marked systematic regional patterns, suggesting that the rupture complexity is strongly influenced by persistent geological factors. We characterize this as the existence of smooth and rough rupture patches with varying interpatch separation, along with failure dynamics producing triggering interactions that augment the regional influences on large events. We present an improved asperity scenario incorporating both effects and categorize global subduction zones and great earthquakes based on their REEF values and slip patterns. Giant earthquakes rupturing over several hundred kilometers can occur in regions with low-REEF patches and small interpatch spacing, such as for the 1960 Chile, 1964 Alaska, and 2011 Tohoku earthquakes, or in regions with high-REEF patches and large interpatch spacing as in the case for the 2004 Sumatra and 1906 Ecuador-Colombia earthquakes. Thus, combining seismic magnitude Mw and REEF, we provide a quantitative framework to better represent the span of rupture characteristics of great earthquakes and to understand global seismicity.

9.
Sci Adv ; 4(2): eaao3225, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29487902

RESUMO

Fault slip during plate boundary earthquakes releases a portion of the shear stress accumulated due to frictional resistance to relative plate motions. Investigation of 101 large [moment magnitude (Mw) ≥ 7] subduction zone plate boundary mainshocks with consistently determined coseismic slip distributions establishes that 15 to 55% of all master event-relocated aftershocks with Mw ≥ 5.2 are located within the slip regions of the mainshock ruptures and few are located in peak slip regions, allowing for uncertainty in the slip models. For the preferred models, cumulative deficiency of aftershocks within the central three-quarters of the scaled slip regions ranges from 15 to 45%, increasing with the total number of observed aftershocks. The spatial gradients of the mainshock coseismic slip concentrate residual shear stress near the slip zone margins and increase stress outside the slip zone, driving both interplate and intraplate aftershock occurrence near the periphery of the mainshock slip. The shear stress reduction in large-slip regions during the mainshock is generally sufficient to preclude further significant rupture during the aftershock sequence, consistent with large-slip areas relocking and not rupturing again for a substantial time.

10.
Sci Adv ; 2(6): e1600581, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27386585

RESUMO

Earthquakes in deeply subducted oceanic lithosphere can involve either brittle or dissipative ruptures. On 24 November 2015, two deep (606 and 622 km) magnitude 7.5 and 7.6 earthquakes occurred 316 s and 55 km apart. The first event (E1) was a brittle rupture with a sequence of comparable-size subevents extending unilaterally ~50 km southward with a rupture speed of ~4.5 km/s. This earthquake triggered several aftershocks to the north along with the other major event (E2), which had 40% larger seismic moment and the same duration (~20 s), but much smaller rupture area and lower rupture speed than E1, indicating a more dissipative rupture. A minor energy release ~12 s after E1 near the E2 hypocenter, possibly initiated by the S wave from E1, and a clear aftershock ~165 s after E1 also near the E2 hypocenter, suggest that E2 was likely dynamically triggered. Differences in deep earthquake rupture behavior are commonly attributed to variations in thermal state between subduction zones. However, the marked difference in rupture behavior of the nearby Peru doublet events suggests that local variations of stress state and material properties significantly contribute to diverse behavior of deep earthquakes.


Assuntos
Terremotos , Terremotos/história , Fenômenos Geológicos , História do Século XXI , Humanos , Modelos Teóricos , Peru
11.
Science ; 344(6185): 700-2, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24833379
12.
Science ; 341(6152): 1380-4, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-24052306

RESUMO

Earth's deepest earthquakes occur in subducting oceanic lithosphere, where temperatures are lower than in ambient mantle. On 24 May 2013, a magnitude 8.3 earthquake ruptured a 180-kilometer-long fault within the subducting Pacific plate about 609 kilometers below the Sea of Okhotsk. Global seismic P wave recordings indicate a radiated seismic energy of ~1.5 × 10(17) joules. A rupture velocity of ~4.0 to 4.5 kilometers/second is determined by back-projection of short-period P waves, and the fault width is constrained to give static stress drop estimates (~12 to 15 megapascals) compatible with theoretical radiation efficiency for crack models. A nearby aftershock had a stress drop one to two orders of magnitude higher, indicating large stress heterogeneity in the deep slab, and plausibly within the rupture process of the great event.

13.
Nature ; 490(7419): 245-9, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23023129

RESUMO

The Indo-Australian plate is undergoing distributed internal deformation caused by the lateral transition along its northern boundary--from an environment of continental collision to an island arc subduction zone. On 11 April 2012, one of the largest strike-slip earthquakes ever recorded (seismic moment magnitude M(w) 8.7) occurred about 100-200 kilometres southwest of the Sumatra subduction zone. Occurrence of great intraplate strike-slip faulting located seaward of a subduction zone is unusual. It results from northwest-southeast compression within the plate caused by the India-Eurasia continental collision to the northwest, together with northeast-southwest extension associated with slab pull stresses as the plate underthrusts Sumatra to the northeast. Here we use seismic wave analyses to reveal that the 11 April 2012 event had an extraordinarily complex four-fault rupture lasting about 160 seconds, and was followed approximately two hours later by a great (M(w) 8.2) aftershock. The mainshock rupture initially expanded bilaterally with large slip (20-30 metres) on a right-lateral strike-slip fault trending west-northwest to east-southeast (WNW-ESE), and then bilateral rupture was triggered on an orthogonal left-lateral strike-slip fault trending north-northeast to south-southwest (NNE-SSW) that crosses the first fault. This was followed by westward rupture on a second WNW-ESE strike-slip fault offset about 150 kilometres towards the southwest from the first fault. Finally, rupture was triggered on another en échelon WNW-ESE fault about 330 kilometres west of the epicentre crossing the Ninetyeast ridge. The great aftershock, with an epicentre located 185 kilometres to the SSW of the mainshock epicentre, ruptured bilaterally on a NNE-SSW fault. The complex faulting limits our resolution of the slip distribution. These great ruptures on a lattice of strike-slip faults that extend through the crust and a further 30-40 kilometres into the upper mantle represent large lithospheric deformation that may eventually lead to a localized boundary between the Indian and Australian plates.

15.
Nature ; 471(7337): 174-5, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21390123
16.
Nature ; 466(7309): 964-8, 2010 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-20725038

RESUMO

Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12 metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50 km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone.

17.
Science ; 324(5924): 226-9, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19359581

RESUMO

On 1 April 2007 a great, tsunamigenic earthquake (moment magnitude 8.1) ruptured the Solomon Islands subduction zone at the triple junction where the Australia and Solomon Sea-Woodlark Basin plates simultaneously underthrust the Pacific plate with different slip directions. The associated abrupt change in slip direction during the great earthquake drove convergent anelastic deformation of the upper Pacific plate, which generated localized uplift in the forearc above the subducting Simbo fault, potentially amplifying local tsunami amplitude. Elastic deformation during the seismic cycle appears to be primarily accommodated by the overriding Pacific forearc. This earthquake demonstrates the seismogenic potential of extremely young subducting oceanic lithosphere, the ability of ruptures to traverse substantial geologic boundaries, and the consequences of complex coseismic slip for uplift and tsunamigenesis.

18.
Science ; 320(5879): 1070-4, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18497297

RESUMO

Earth's lowermost mantle has thermal, chemical, and mineralogical complexities that require precise seismological characterization. Stacking, migration, and modeling of over 10,000 P and S waves that traverse the deep mantle under the Cocos plate resolve structures above the core-mantle boundary. A small -0.07 +/- 0.15% decrease of P wave velocity (Vp) is accompanied by a 1.5 +/- 0.5% increase in S wave velocity (V(s)) near a depth of 2570 km. Bulk-sound velocity [Vb = (Vp2 - 4/3Vs2)1/2] decreases by -1.0 +/- 0.5% at this depth. Transition of the primary lower-mantle mineral, (Mg(1-x-y) Fe(x)Al(y))(Si,Al)O3 perovskite, to denser post-perovskite is expected to have a negligible effect on the bulk modulus while increasing the shear modulus by approximately 6%, resulting in local anticorrelation of Vb and Vs anomalies; this behavior explains the data well.

19.
Nature ; 451(7178): 561-5, 2008 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-18235499

RESUMO

Temporal variations of the frictional resistance on subduction-zone plate boundary faults associated with the stick-slip cycle of large interplate earthquakes are thought to modulate the stress regime and earthquake activity within the subducting oceanic plate. Here we report on two great earthquakes that occurred near the Kuril islands, which shed light on this process and demonstrate the enhanced seismic hazard accompanying triggered faulting. On 15 November 2006, an event of moment magnitude 8.3 ruptured the shallow-dipping plate boundary along which the Pacific plate descends beneath the central Kuril arc. The thrust ruptured a seismic gap that previously had uncertain seismogenic potential, although the earlier occurrence of outer-rise compressional events had suggested the presence of frictional resistance. Within minutes of this large underthrusting event, intraplate extensional earthquakes commenced in the outer rise region seaward of the Kuril trench, and on 13 January 2007, an event of moment magnitude 8.1 ruptured a normal fault extending through the upper portion of the Pacific plate, producing one of the largest recorded shallow extensional earthquakes. This energetic earthquake sequence demonstrates the stress transfer process within the subducting lithosphere, and the distinct rupture characteristics of these great earthquakes illuminate differences in seismogenic properties and seismic hazard of such interplate and intraplate faults.

20.
Science ; 316(5826): 855-9, 2007 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-17431138

RESUMO

Subduction zones play critical roles in the recycling of oceanic lithosphere and the generation of continental crust. Seismic imaging can reveal structures associated with key dynamic processes occurring in the upper-mantle wedge above the sinking oceanic slab. Three-dimensional images of reflecting interfaces throughout the upper-mantle wedge above the subducting Tonga slab were obtained by migration of teleseismic recordings of underside P- and S-wave reflections. Laterally continuous weak reflectors with tens of kilometers of topography were detected at depths near 90, 125, 200, 250, 300, 330, 390, 410, and 450 kilometers. P- and S-wave impedances decreased at the 330-kilometer and 450-kilometer reflectors, and S-wave impedance decreased near 200 kilometers in the vicinity of the slab and near 390 kilometers, just above the global 410-kilometer increase. The pervasive seismic reflectivity results from phase transitions and compositional zonation associated with extensive metasomatism involving slab-derived fluids rising through the wedge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...