Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 987, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200051

RESUMO

The promising next-generation probiotic Faecalibacterium prausnitzii is one of the most abundant acetate-consuming, butyrate-producing bacteria in the healthy human gut. Yet, little is known about how acetate availability affects this bacterium's gene expression strategies. Here, we investigated the effect of acetate on temporal changes in the transcriptome of F. duncaniae A2-165 cultures using RNA sequencing. We compared gene expression patterns between two growth phases (early stationary vs. late exponential) and two acetate levels (low: 3 mM vs. high: 23 mM). Only in low-acetate conditions, a general stress response was activated. In high-acetate conditions, there was greater expression of genes related to butyrate synthesis and to the importation of B vitamins and iron. Specifically, expression was strongly activated in the case of the feoAABC operon, which encodes a FeoB ferrous iron transporter, but not in the case of the feoAB gene, which encodes a second putative FeoAB transporter. Moreover, excess ferrous iron repressed feoB expression but not feoAB. Lastly, FeoB but not FeoAB peptides from strain A2-165 were found in abundance in a healthy human fecal metaproteome. In conclusion, we characterized two early-stationary transcriptomes based on acetate consumption and this work highlights the regulation of feoB expression in F. duncaniae A2-165.


Assuntos
Adipogenia , Sobrecarga de Ferro , Humanos , Acetatos , Faecalibacterium prausnitzii , Ferro , Butiratos
2.
Nutrients ; 14(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35406091

RESUMO

The expanding knowledge on the systemic influence of the human microbiome suggests that fecal samples are underexploited sources of new beneficial strains for extra-intestinal health. We have recently shown that acetate, a main circulating microbiota-derived molecule, reduces the deleterious effects of pulmonary Streptococcus pneumoniae and enteric Salmonella enterica serovar Typhimurium bacterial post-influenza superinfections. Considering the beneficial and broad effects of acetate, we intended to isolate a commensal strain, producing acetate and potentially exploitable in the context of respiratory infections. We designed successive steps to select intestinal commensals that are extremely oxygen-sensitive, cultivable after a freezing process, without a proinflammatory effect on IL-8 induction, and producing acetate. We have identified the Blautia faecis DSM33383 strain, which decreased the TNFα-induced production of IL-8 by the intestinal epithelial cell line HT-29. The beneficial effect of this bacterial strain was further studied in two preclinical models of post-influenza Streptococcus pneumoniae (S.p) and Salmonella enterica serovar Typhimurium (S.t) superinfection. The intragastrical administration of Blautia faecis DSM33383 led to protection in influenza-infected mice suffering from an S.p. and, to a lesser extent, from an S.t secondary infection. Altogether, this study showed that Blautia faecis DSM33383 could be a promising candidate for preventive management of respiratory infectious diseases.


Assuntos
Clostridiales , Infecções por Orthomyxoviridae , Infecções Pneumocócicas , Salmonelose Animal , Animais , Clostridiales/classificação , Clostridiales/isolamento & purificação , Modelos Animais de Doenças , Humanos , Influenza Humana/complicações , Interleucina-8 , Camundongos , Infecções por Orthomyxoviridae/complicações , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/prevenção & controle , Salmonelose Animal/microbiologia , Salmonelose Animal/prevenção & controle , Salmonella typhimurium , Streptococcus pneumoniae
3.
BMC Genomics ; 18(1): 955, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29216827

RESUMO

BACKGROUND: Brevibacterium strains are widely used for the manufacturing of surface-ripened cheeses, contributing to the breakdown of lipids and proteins and producing volatile sulfur compounds and red-orange pigments. The objective of the present study was to perform comparative genomic analyses in order to better understand the mechanisms involved in their ability to grow on the cheese surface and the differences between the strains. RESULTS: The genomes of 23 Brevibacterium strains, including twelve strains isolated from cheeses, were compared for their gene repertoire involved in salt tolerance, iron acquisition, bacteriocin production and the ability to use the energy compounds present in cheeses. All or almost all the genomes encode the enzymes involved in ethanol, acetate, lactate, 4-aminobutyrate and glycerol catabolism, and in the synthesis of the osmoprotectants ectoine, glycine-betaine and trehalose. Most of the genomes contain two contiguous genes encoding extracellular proteases, one of which was previously characterized for its activity on caseins. Genes encoding a secreted triacylglycerol lipase or involved in the catabolism of galactose and D-galactonate or in the synthesis of a hydroxamate-type siderophore are present in part of the genomes. Numerous Fe3+/siderophore ABC transport components are present, part of them resulting from horizontal gene transfers. Two cheese-associated strains have also acquired catecholate-type siderophore biosynthesis gene clusters by horizontal gene transfer. Predicted bacteriocin biosynthesis genes are present in most of the strains, and one of the corresponding gene clusters is located in a probable conjugative transposon that was only found in cheese-associated strains. CONCLUSIONS: Brevibacterium strains show differences in their gene repertoire potentially involved in the ability to grow on the cheese surface. Part of these differences can be explained by different phylogenetic positions or by horizontal gene transfer events. Some of the distinguishing features concern biotic interactions with other strains such as the secretion of proteases and triacylglycerol lipases, and competition for iron or bacteriocin production. In the future, it would be interesting to take the properties deduced from genomic analyses into account in order to improve the screening and selection of Brevibacterium strains, and their association with other ripening culture components.


Assuntos
Brevibacterium/genética , Queijo/microbiologia , Bacteriocinas/biossíntese , Brevibacterium/classificação , Brevibacterium/isolamento & purificação , Brevibacterium/metabolismo , Genômica , Glicerol/metabolismo , Ferro/metabolismo , Metabolismo dos Lipídeos/genética , Pressão Osmótica , Fenazinas/metabolismo , Filogenia
4.
Genome Announc ; 4(4)2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27445372

RESUMO

Here, we report the draft genome sequence of Corynebacterium variabile Mu292, which was originally isolated from the surface of Munster, a French smear-ripened cheese. This genome investigation will improve our knowledge on the molecular determinants potentially involved in the adaptation of this strain during the Munster-type cheese manufacturing process.

5.
Genome Announc ; 4(2)2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26941141

RESUMO

Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes.

6.
FEMS Microbiol Lett ; 362(2): 1-11, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25670699

RESUMO

Cheese rinds host a specific microbiota composed of both prokaryotes (such as Actinobacteria, Firmicutes and Proteobacteria) and eukaryotes (primarily yeasts and moulds). By combining modern molecular biology tools with conventional, culture-based techniques, it has now become possible to create a catalogue of the biodiversity that inhabits this special environment. Here, we review the microbial genera detected on the cheese surface and highlight the previously unsuspected importance of non-inoculated microflora--raising the question of the latter's environmental sources and their role in shaping microbial communities. There is now a clear need to revise the current view of the cheese rind ecosystem (i.e. that of a well-defined, perfectly controlled ecosystem). Inclusion of these new findings should enable us to better understand the cheese-making process.


Assuntos
Bacteroidetes/fisiologia , Queijo/microbiologia , Fungos/fisiologia , Bactérias Gram-Positivas/fisiologia , Microbiota , Proteobactérias/fisiologia , Bacteroidetes/classificação , Bacteroidetes/isolamento & purificação , Queijo/classificação , Microbiologia de Alimentos , Fungos/classificação , Fungos/isolamento & purificação , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/isolamento & purificação , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , Leveduras/classificação , Leveduras/isolamento & purificação , Leveduras/fisiologia
7.
J Bacteriol ; 193(18): 5024-5, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21742871

RESUMO

The commensal bacterium Streptococcus salivarius is a prevalent species of the human oropharyngeal tract with an important role in oral ecology. Here, we report the complete 2.2-Mb genome sequence and annotation of strain JIM8777, which was recently isolated from the oral cavity of a healthy, dentate infant.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Streptococcus/genética , Humanos , Lactente , Dados de Sequência Molecular , Boca/microbiologia , Streptococcus/isolamento & purificação
8.
Mol Microbiol ; 71(5): 1205-17, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19170887

RESUMO

Cell separation is dependent on cell wall hydrolases that cleave the peptidoglycan shared between daughter cells. In Streptococcus thermophilus, this step is performed by the Cse protein whose depletion resulted in the formation of extremely long chains of cells. Cse, a natural chimeric enzyme created by domain shuffling, carries at least two important domains for its activity: the LysM expected to be responsible for the cell wall-binding and the CHAP domain predicted to contain the active centre. Accordingly, the localization of Cse on S. thermophilus cell surface has been undertaken by immunogold electron and immunofluorescence microscopies using of antibodies raised against the N-terminal end of this protein. Immunolocalization shows the presence of the Cse protein at mature septa. Moreover, the CHAP domain of Cse exhibits a cell wall lytic activity in zymograms performed with cell walls of Micrococcus lysodeikticus, Bacillus subtilis and S. thermophilus. Additionally, RP-HPLC analysis of muropeptides released from B. subtilis and S. thermophilus cell wall after digestion with the CHAP domain shows that Cse is an endopeptidase. Altogether, these results suggest that Cse is a cell wall hydrolase involved in daughter cell separation of S. thermophilus.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular , Endopeptidases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Streptococcus thermophilus/enzimologia , Proteínas de Bactérias/genética , Parede Celular/enzimologia , Endopeptidases/genética , Teste de Complementação Genética , Mutação , RNA Bacteriano/genética , Streptococcus thermophilus/citologia , Streptococcus thermophilus/genética
9.
Res Microbiol ; 159(7-8): 507-15, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18656532

RESUMO

Within Streptococcus thermophilus, Cse was identified as the major cell disconnecting peptidoglycan hydrolase (PGH) and was demonstrated to be species-specific. To identify cell disconnecting PGHs encoded by other Streptococcus genomes, we explored the diversity of domains carried by Firmicutes PGHs, and especially that of enzymes involved in daughter cell separation. This work brings to light the diversity of PGHs and reveals that each species recruits its own cell-separating enzyme distinct from that of the others. This specificity is probably correlated with the diversity of substrates found in the bacterial cell wall.


Assuntos
Proteínas de Bactérias/química , Bactérias Gram-Positivas/química , Bactérias Gram-Positivas/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , Genoma Bacteriano , Bactérias Gram-Positivas/genética , Dados de Sequência Molecular , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Estrutura Terciária de Proteína , Especificidade da Espécie , Especificidade por Substrato
10.
J Mol Microbiol Biotechnol ; 14(1-3): 31-40, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17957108

RESUMO

Cell division is a dynamic process ending by separation of the daughter cells. This final step requires the cleavage of the murein septum synthetized during cell division. In Streptococcus thermophilus, cse plays an important role in cell separation. Cse protein contains, at its N-terminal end, a signal peptide and a putative LysM motif suggesting that it is secreted and able to bind to the cell wall. Furthermore, the C-terminus of Cse carries a putative cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) domain conferring to the protein a potential catalytic activity. To gain insight into the role of Cse in the cell division process, in silico analysis of the Firmicutes proteins displaying CHAP-related domain was undertaken. This work allowed us to distinguish and characterize within the Firmicutes the 2 families of proteins (CHAP and NlpC/p60) belonging to the CHAP superfamily. These 2 families regroup mainly peptidoglycan hydrolases. Data from the literature indicate that NlpC/p60 and CHAP proteins cleave distinct peptidoglycan bonds. Among the enzymes characterized within the Firmicutes, NlpC/p60 proteins are gamma-D-glutamate-meso-diaminopimelate muropeptidase. Instead, CHAP enzymes involved in cell separation are N-acetylmuramoyl-L-alanine amidase and CHAP lysins have endopeptidase activity.


Assuntos
Bactérias Gram-Positivas/citologia , Bactérias Gram-Positivas/enzimologia , N-Acetil-Muramil-L-Alanina Amidase , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , Endopeptidases/química , Endopeptidases/genética , Endopeptidases/metabolismo , Dados de Sequência Molecular , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Alinhamento de Sequência , Streptococcus thermophilus/citologia , Streptococcus thermophilus/enzimologia
11.
Antonie Van Leeuwenhoek ; 90(3): 245-55, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16902754

RESUMO

The cse gene of Streptococcus thermophilus encodes an extracytoplasmic protein involved in cell segregation. The Cse protein consists of two putative domains: a cell wall attachment LysM domain and a catalytic CHAP domain. These two domains are spaced by an interdomain linker, known as Var-Cse, previously reported to be highly divergent between two S. thermophilus strains. The aim of this study was to assess the extent of this intraspecific variability and the functional involvement of the var-cse region in cell segregation. Analysis of the var-cse sequence of 19 different strains allowed detection of 11 different alleles, varying from 390 bp to 543 bp, all containing interspersed and tandem nucleotides repeats. Overall, 11 different repeat units were identified and some series of these small repeats, named supermotifs, form large repeats. Results suggested that var-cse evolved by deletion of all or part of the repeats and by duplication of repeats or supermotifs. Moreover, sequence analysis of the whole cse locus revealed that the cse ORF is mosaic suggesting that var-cse polymorphism resulted from horizontal transfer. The partial deletion of the var-cse region of the S. thermophilus strain CNRZ368 led to the lengthening of the number of cells per streptococcal chain, indicating that this region is required for full cell segregation in S. thermophilus strain CNRZ368.


Assuntos
Proteínas de Bactérias/genética , Streptococcus thermophilus/genética , Alelos , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , Divisão Celular/genética , Divisão Celular/fisiologia , Dados de Sequência Molecular , Streptococcus thermophilus/classificação
12.
J Bacteriol ; 187(8): 2737-46, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15805520

RESUMO

The isolation of a Streptococcus thermophilus CNRZ368 mutant displaying a long-chain phenotype allowed us to identify the cse gene (for cellular segregation). The N terminus of Cse exhibits high similarity to Streptococcus agalactiae surface immunogenic protein (SIP), while its C terminus exhibits high similarity to S. thermophilus PcsB. In CNRZ368, deletion of the entire cse open reading frame leads to drastic lengthening of cell chains and altered colony morphology. Complementation of the Deltacse mutation with a wild-type allele restored both wild-type phenotypes. The central part of Cse is a repeat-rich region with low sequence complexity. Comparison of cse from CNRZ368 and LMG18311 strains reveals high variability of this repeat-rich region. To assess the impact of this central region variability, the central region of LMG18311 cse was exchanged with that of CNRZ368 cse. This replacement did not affect chain length, showing that divergence of the central part does not modify cell segregation activity of Cse. The structure of the cse locus suggests that the chimeric organization of cse results from insertion of a duplicated sequence deriving from the pcsB 3' end into an ancestral sip gene. Thus, the cse locus illustrates the module-shuffling mechanism of bacterial gene evolution.


Assuntos
Compartimento Celular , Proteínas da Matriz Extracelular/genética , Streptococcus/genética , Teste de Complementação Genética , Variação Genética , Dados de Sequência Molecular , Mutagênese Insercional , Proteínas Recombinantes de Fusão , Streptococcus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...