Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Genomics ; 56(3): 276-282, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189116

RESUMO

Preeclampsia is a hypertensive disorder of pregnancy that affects ∼2%-5% of all pregnancies, contributes to 4 of the top 10 causes of pregnancy-related deaths, and remains a long-term risk factor for cardiometabolic diseases. Yet, little is still known about the molecular mechanisms that lead to this disease. There is evidence that some cases have a genetic cause. However, it is well appreciated that harmful factors in the environment, such as poor nutrition, stress, and toxins, may lead to epigenetics changes that can contribute to this disease. DNA methylation is one of the epigenetic modifications known to be fairly stable and impact gene expression. Using DNA from buccal swabs, we analyzed global DNA methylation among three groups of individuals: mothers who experienced 1) early-stage preeclampsia (<32 wk), 2) late-stage preeclampsia (>37 wk), or 3) no complications during their pregnancies, as well as the children from these three groups. We found significant differentially methylated regions (DMRs) between mothers who experienced preeclampsia compared with those with no complications adjacent or within genes that are important for placentation, embryonic development, cell adhesion, and inflammation (e.g., the cadherin pathway). A significant portion of DMR genes showed expression in tissues relevant to preeclampsia (i.e., the brain, heart, kidney, uterus, ovaries, and placenta). As this study was performed on DNA extracted from cheek swabs, this opens the way to future studies in different tissues, aimed at identifying possible biomarkers of risk and early detection, developing targeted interventions, and reducing the progression of this life-threatening disease.NEW & NOTEWORTHY Preeclampsia is a life-threatening hypertensive disorder, affecting 2%-5% of pregnancies, that remains poorly understood. This study analyzed DNA methylation from buccal swabs from mothers who experienced early and late-stage preeclampsia and those with uncomplicated pregnancies, along with their children. Differentially methylated regions were found near and within genes crucial for placental function, embryonic development, and inflammation. Many of these genes are expressed in preeclampsia-related tissues, offering hope for future biomarker development for this condition.


Assuntos
Hipertensão , Pré-Eclâmpsia , Criança , Gravidez , Feminino , Humanos , Placenta/metabolismo , Pré-Eclâmpsia/diagnóstico , Epigenoma , Metilação de DNA/genética , Hipertensão/genética , Biomarcadores/metabolismo , Inflamação/genética , DNA
2.
Nat Commun ; 14(1): 8111, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062027

RESUMO

Topological associating domains (TADs) are self-interacting genomic units crucial for shaping gene regulation patterns. Despite their importance, the extent of their evolutionary conservation and its functional implications remain largely unknown. In this study, we generate Hi-C and ChIP-seq data and compare TAD organization across four primate and four rodent species and characterize the genetic and epigenetic properties of TAD boundaries in correspondence to their evolutionary conservation. We find 14% of all human TAD boundaries to be shared among all eight species (ultraconserved), while 15% are human-specific. Ultraconserved TAD boundaries have stronger insulation strength, CTCF binding, and enrichment of older retrotransposons compared to species-specific boundaries. CRISPR-Cas9 knockouts of an ultraconserved boundary in a mouse model lead to tissue-specific gene expression changes and morphological phenotypes. Deletion of a human-specific boundary near the autism-related AUTS2 gene results in the upregulation of this gene in neurons. Overall, our study provides pertinent TAD boundary evolutionary conservation annotations and showcases the functional importance of TAD evolution.


Assuntos
Genoma , Genômica , Animais , Camundongos , Humanos , Regulação da Expressão Gênica , Epigenômica , Sequenciamento de Cromatina por Imunoprecipitação , Cromatina , Mamíferos/genética
3.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945527

RESUMO

Topological associating domains (TADs) are self-interacting genomic units crucial for shaping gene regulation patterns. Despite their importance, the extent of their evolutionary conservation and its functional implications remain largely unknown. In this study, we generate Hi-C and ChIP-seq data and compare TAD organization across four primate and four rodent species, and characterize the genetic and epigenetic properties of TAD boundaries in correspondence to their evolutionary conservation. We find that only 14% of all human TAD boundaries are shared among all eight species (ultraconserved), while 15% are human-specific. Ultraconserved TAD boundaries have stronger insulation strength, CTCF binding, and enrichment of older retrotransposons, compared to species-specific boundaries. CRISPR-Cas9 knockouts of two ultraconserved boundaries in mouse models leads to tissue-specific gene expression changes and morphological phenotypes. Deletion of a human-specific boundary near the autism-related AUTS2 gene results in upregulation of this gene in neurons. Overall, our study provides pertinent TAD boundary evolutionary conservation annotations, and showcase the functional importance of TAD evolution.

4.
Genome Res ; 32(7): 1298-1314, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35728967

RESUMO

The retrotransposon LINE-1 (L1) is central to the recent evolutionary history of the human genome and continues to drive genetic diversity and germline pathogenesis. However, the spatiotemporal extent and biological significance of somatic L1 activity are poorly defined and are virtually unexplored in other primates. From a single L1 lineage active at the divergence of apes and Old World monkeys, successive L1 subfamilies have emerged in each descendant primate germline. As revealed by case studies, the presently active human L1 subfamily can also mobilize during embryonic and brain development in vivo. It is unknown whether nonhuman primate L1s can similarly generate somatic insertions in the brain. Here we applied approximately 40× single-cell whole-genome sequencing (scWGS), as well as retrotransposon capture sequencing (RC-seq), to 20 hippocampal neurons from two rhesus macaques (Macaca mulatta). In one animal, we detected and PCR-validated a somatic L1 insertion that generated target site duplications, carried a short 5' transduction, and was present in ∼7% of hippocampal neurons but absent from cerebellum and nonbrain tissues. The corresponding donor L1 allele was exceptionally mobile in vitro and was embedded in PRDM4, a gene expressed throughout development and in neural stem cells. Nanopore long-read methylome and RNA-seq transcriptome analyses indicated young retrotransposon subfamily activation in the early embryo, followed by repression in adult tissues. These data highlight endogenous macaque L1 retrotransposition potential, provide prototypical evidence of L1-mediated somatic mosaicism in a nonhuman primate, and allude to L1 mobility in the brain over the past 30 million years of human evolution.


Assuntos
Encéfalo , Elementos Nucleotídeos Longos e Dispersos , Retroelementos , Animais , Proteínas de Ligação a DNA/genética , Macaca mulatta/genética , Neurônios , Retroelementos/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...