Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(5): e0267431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35588134

RESUMO

Configuring the network connections in industrial, power, and water networks to mimic the structural patterns of ecological food webs has been shown to improve the resilience of human networks. This work investigates the ability of food web inspiration to specifically guide the incorporation of renewable energy and water sources for resilience. Feasibility is tested using the water and electricity networks of the Texas A&M University main campus, demonstrating the potential of university campus case studies as analogies for other multi-use networks, such as cities or industrial-commercial regions, due to the variety of functions met within the system boundaries. Ecological robustness, the unique and characteristic behavior of ecosystems to slightly favor redundancy over efficiency, is used to correlate the incorporation and supply-levels of solar power and rainwater collection in a realistic campus model with the overall resilience of the electricity and domestic water networks. Non-obviously, the results suggest that the ecologically-similar resilience is achieved when less than 100% of utilities come from renewable sources, indicating an important potential tradeoff between efforts to shift to 100% renewable sources and network resilience concerns.


Assuntos
Ecossistema , Cadeia Alimentar , Cidades , Humanos , Energia Renovável , Água
2.
Reliab Eng Syst Saf ; 204: 107142, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33132538

RESUMO

Increasingly prevalent extreme weather events have caused resilience to become an essential sustainable development component for resource and infrastructure networks. Existing resilience metrics require detailed knowledge of the system and potential disruptions, which is not available in the early design stage. The lack of quantitative tools to guide the early stages of design for resilience, forces engineers to rely on heuristics (use physical redundancy, localized capacity, etc.). This research asserts that the required quantitative guidelines can be developed using the architecting principles of biological ecosystems, which maintain a unique balance between pathway redundancy and efficiency, enabling them to be both productive under normal circumstances and survive disruptions. Ecologists quantify this network characteristic using the ecological fitness function. This paper presents the required reformulation required to enable the use of this metric in the design and analysis of resource and infrastructure networks with multiple distinct, but interdependent, interactions. The proposed framework is validated by comparing the resilience characteristics of two notional supply chain designs: one designed for minimum shipping cost and the other designed using the proposed bio-inspired framework. The results support using the proposed bio-inspired framework to guide designers in creating resilient and sustainable resource and infrastructure networks.

3.
PLoS One ; 14(12): e0226993, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31891623

RESUMO

Human networks and engineered systems are traditionally designed to maximize efficiency. Ecosystems on the other hand, achieve long-term robustness and sustainability by maintaining a unique balance between pathway efficiency and redundancy, measured in terms of the number of flow pathways available for a given unit of flow at any node in the network. Translating this flow-based ecosystem robustness into an engineering context supports the creation of new robust and sustainable design guidelines for engineered systems. Thermodynamic cycles provide good examples of human systems where simple and clearly defined modifications can be made to increase efficiency. Twenty-three variations on the Brayton and Rankine cycles are used to understand the relationship between design decisions that maximize a system's efficient use of energy (measured by thermodynamic first law efficiency) and ecological measures of robustness and structural efficiency. The results reveal that thermodynamic efficiency and ecological pathway efficiency do not always correlate and that while on average modifications to increase energy efficiency reduce the robustness of the system, the engineering understanding of ecological network design presented here can enable decisions that are able to increase both energy efficiency and robustness.


Assuntos
Ecologia/métodos , Ecossistema , Engenharia/métodos , Termodinâmica , Eficiência , Humanos , Desenho Universal
4.
Environ Sci Technol ; 50(20): 11243-11252, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27611963

RESUMO

Biologically Inspired Design (biomimicry) and Industrial Ecology both look to natural systems to enhance the sustainability and performance of engineered products, systems and industries. Bioinspired design (BID) traditionally has focused on a unit operation and single product level. In contrast, this paper describes how principles of network organization derived from analysis of ecosystem properties can be applied to industrial system networks. Specifically, this paper examines the applicability of particular food web matrix properties as design rules for economically and biologically sustainable industrial networks, using an optimization model developed for a carpet recycling network. Carpet recycling network designs based on traditional cost and emissions based optimization are compared to designs obtained using optimizations based solely on ecological food web metrics. The analysis suggests that networks optimized using food web metrics also were superior from a traditional cost and emissions perspective; correlations between optimization using ecological metrics and traditional optimization ranged generally from 0.70 to 0.96, with flow-based metrics being superior to structural parameters. Four structural food parameters provided correlations nearly the same as that obtained using all structural parameters, but individual structural parameters provided much less satisfactory correlations. The analysis indicates that bioinspired design principles from ecosystems can lead to both environmentally and economically sustainable industrial resource networks, and represent guidelines for designing sustainable industry networks.


Assuntos
Cadeia Alimentar , Indústrias , Modelos Teóricos
5.
PLoS One ; 7(12): e51841, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251638

RESUMO

A sustainable global community requires the successful integration of environment and engineering. In the public and private sectors, designing cyclical ("closed loop") resource networks increasingly appears as a strategy employed to improve resource efficiency and reduce environmental impacts. Patterning industrial networks on ecological ones has been shown to provide significant improvements at multiple levels. Here, we apply the biological metric cyclicity to 28 familiar thermodynamic power cycles of increasing complexity. These cycles, composed of turbines and the like, are scientifically very different from natural ecosystems. Despite this difference, the application results in a positive correlation between the maximum thermal efficiency and the cyclic structure of the cycles. The immediate impact of these findings results in a simple method for comparing cycles to one another, higher cyclicity values pointing to those cycles which have the potential for a higher maximum thermal efficiency. Such a strong correlation has the promise of impacting both natural ecology and engineering thermodynamics and provides a clear motivation to look for more fundamental scientific connections between natural and engineered systems.


Assuntos
Ecologia , Ecossistema , Centrais Elétricas , Meio Ambiente , Indústrias , Periodicidade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...