Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 13(5): e1006399, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28545104

RESUMO

Sensing and response to changes in nutrient availability are essential for the lifestyle of environmental and pathogenic bacteria. Serine/threonine protein kinase G (PknG) is required for virulence of the human pathogen Mycobacterium tuberculosis, and its putative substrate GarA regulates the tricarboxylic acid cycle in M. tuberculosis and other Actinobacteria by protein-protein binding. We sought to understand the stimuli that lead to phosphorylation of GarA, and the roles of this regulatory system in pathogenic and non-pathogenic bacteria. We discovered that M. tuberculosis lacking garA was severely attenuated in mice and macrophages and furthermore that GarA lacking phosphorylation sites failed to restore the growth of garA deficient M. tuberculosis in macrophages. Additionally we examined the impact of genetic disruption of pknG or garA upon protein phosphorylation, nutrient utilization and the intracellular metabolome. We found that phosphorylation of GarA requires PknG and depends on nutrient availability, with glutamate and aspartate being the main stimuli. Disruption of pknG or garA caused opposing effects on metabolism: a defect in glutamate catabolism or depletion of intracellular glutamate, respectively. Strikingly, disruption of the phosphorylation sites of GarA was sufficient to recapitulate defects caused by pknG deletion. The results suggest that GarA is a cellular target of PknG and the metabolomics data demonstrate that the function of this signaling system is in metabolic regulation. This function in amino acid homeostasis is conserved amongst the Actinobacteria and provides an example of the close relationship between metabolism and virulence.


Assuntos
Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Metabolômica , Mycobacterium tuberculosis , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Ácido Aspártico/metabolismo , Proteínas de Bactérias/genética , Ácido Glutâmico/metabolismo , Homeostase , Macrófagos/microbiologia , Camundongos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Tuberculose/microbiologia , Virulência
2.
BMC Genomics ; 17: 331, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27147217

RESUMO

BACKGROUND: Burkholderia pseudomallei is the causative agent of melioidosis, a severe invasive disease of humans and animals. Initial screening of a B. pseudomallei signature-tagged mutagenesis library identified an attenuated mutant with a transposon insertion in a gene encoding the sensor component of an uncharacterised two-component signal transduction system (TCSTS), which we designated BprRS. RESULTS: Single gene inactivation of either the response regulator gene (bprR) or the sensor histidine kinase gene (bprS) resulted in mutants with reduced swarming motility and reduced virulence in mice. However, a bprRS double mutant was not attenuated for virulence and displayed wild-type levels of motility. The transcriptomes of the bprS, bprR and bprRS mutants were compared with the transcriptome of the parent strain K96243. Inactivation of the entire BprRS TCSTS (bprRS double mutant) resulted in altered expression of only nine genes, including both bprR and bprS, five phage-related genes and bpss0686, encoding a putative 5, 10-methylene tetrahydromethanopterin reductase involved in one carbon metabolism. In contrast, the transcriptomes of each of the bprR and bprS single gene mutants revealed more than 70 differentially expressed genes common to both mutants, including regulatory genes and those required for flagella assembly and for the biosynthesis of the cytotoxic polyketide, malleilactone. CONCLUSIONS: Inactivation of the entire BprRS TCSTS did not alter virulence or motility and very few genes were differentially expressed indicating that the definitive BprRS regulon is relatively small. However, loss of a single component, either the sensor histidine kinase BprS or its cognate response regulator BprR, resulted in significant transcriptomic and phenotypic differences from the wild-type strain. We hypothesize that the dramatically altered phenotypes of these single mutants are the result of cross-regulation with one or more other TCSTSs and concomitant dysregulation of other key regulatory genes.


Assuntos
Burkholderia pseudomallei/patogenicidade , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Burkholderia pseudomallei/genética , Regulação Bacteriana da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Mutação , Virulência
3.
PLoS One ; 10(4): e0121271, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25830295

RESUMO

Burkholderia pseudomallei is the causative agent of the severe tropical disease melioidosis, which commonly presents as sepsis. The B. pseudomallei K96243 genome encodes eleven predicted autotransporters, a diverse family of secreted and outer membrane proteins often associated with virulence. In a systematic study of these autotransporters, we constructed insertion mutants in each gene predicted to encode an autotransporter and assessed them for three pathogenesis-associated phenotypes: virulence in the BALB/c intra-peritoneal mouse melioidosis model, net intracellular replication in J774.2 murine macrophage-like cells and survival in 45% (v/v) normal human serum. From the complete repertoire of eleven autotransporter mutants, we identified eight mutants which exhibited an increase in median lethal dose of 1 to 2-log10 compared to the isogenic parent strain (bcaA, boaA, boaB, bpaA, bpaC, bpaE, bpaF and bimA). Four mutants, all demonstrating attenuation for virulence, exhibited reduced net intracellular replication in J774.2 macrophage-like cells (bimA, boaB, bpaC and bpaE). A single mutant (bpaC) was identified that exhibited significantly reduced serum survival compared to wild-type. The bpaC mutant, which demonstrated attenuation for virulence and net intracellular replication, was sensitive to complement-mediated killing via the classical and/or lectin pathway. Serum resistance was rescued by in trans complementation. Subsequently, we expressed recombinant proteins of the passenger domain of four predicted autotransporters representing each of the phenotypic groups identified: those attenuated for virulence (BcaA), those attenuated for virulence and net intracellular replication (BpaE), the BpaC mutant with defects in virulence, net intracellular replication and serum resistance and those displaying wild-type phenotypes (BatA). Only BcaA and BpaE elicited a strong IFN-γ response in a restimulation assay using whole blood from seropositive donors and were recognised by seropositive human sera from the endemic area. To conclude, several predicted autotransporters contribute to B. pseudomallei virulence and BpaC may do so by conferring resistance against complement-mediated killing.


Assuntos
Proteínas de Bactérias/genética , Burkholderia pseudomallei/patogenicidade , Sistemas de Secreção Tipo V/genética , Virulência/genética , Imunidade Adaptativa , Animais , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/genética , Linhagem Celular , Modelos Animais de Doenças , Humanos , Imunidade Celular , Lectinas/metabolismo , Melioidose/metabolismo , Melioidose/patologia , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Mutagênese , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Soro/química , Sistemas de Secreção Tipo V/metabolismo
5.
PLoS One ; 8(11): e79461, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223950

RESUMO

The autotransporters are a large and diverse family of bacterial secreted and outer membrane proteins, which are present in many Gram-negative bacterial pathogens and play a role in numerous environmental and virulence-associated interactions. As part of a larger systematic study on the autotransporters of Burkholderia pseudomallei, the causative agent of the severe tropical disease melioidosis, we have constructed an insertion mutant in the bpss1439 gene encoding an unstudied predicted trimeric autotransporter adhesin. The bpss1439 mutant demonstrated a significant reduction in biofilm formation at 48 hours in comparison to its parent 10276 wild-type strain. This phenotype was complemented to wild-type levels by the introduction of a full-length copy of the bpss1439 gene in trans. Examination of the wild-type and bpss1439 mutant strains under biofilm-inducing conditions by microscopy after 48 hours confirmed that the bpss1439 mutant produced less biofilm compared to wild-type. Additionally, it was observed that this phenotype was due to low levels of bacterial adhesion to the abiotic surface as well as reduced microcolony formation. In a murine melioidosis model, the bpss1439 mutant strain demonstrated a moderate attenuation for virulence compared to the wild-type strain. This attenuation was abrogated by in trans complementation, suggesting that bpss1439 plays a subtle role in the pathogenesis of B. pseudomallei. Taken together, these studies indicate that BPSS1439 is a novel predicted autotransporter involved in biofilm formation of B. pseudomallei; hence, this factor was named BbfA, Burkholderia biofilm factor A.


Assuntos
Adesinas Bacterianas/química , Biofilmes/crescimento & desenvolvimento , Burkholderia pseudomallei/fisiologia , Multimerização Proteica , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Animais , Aderência Bacteriana/genética , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/virologia , Melioidose/microbiologia , Camundongos , Mutação , Fenótipo , Estrutura Quaternária de Proteína
6.
J Microbiol ; 51(4): 522-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23990305

RESUMO

Burkholderia pseudomallei, the causative agent of melioidosis, is a Gram-negative saprophytic bacterium capable of surviving within phagocytic cells. To assess the role of BopC (a type III secreted effector protein) in the pathogenesis of B. pseudomallei, a B. pseudomallei bopC mutant was used to infect J774A.1 macrophage-like cells. The bopC mutant showed significantly reduced intracellular survival in infected macrophages compared to wild-type B. pseudomallei. In addition, the bopC mutant displayed delayed escape from endocytic vesicles compared with the wild-type strain. This indicates that BopC is important, and at least in part, needed for intracellular survival of B. pseudomallei.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Mutação , Actinas/metabolismo , Animais , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Melioidose/metabolismo , Melioidose/microbiologia , Camundongos , Ligação Proteica
7.
Front Microbiol ; 2: 151, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21811486

RESUMO

Burkholderia pseudomallei and Burkholderia mallei are closely related Gram-negative bacteria responsible for the infectious diseases melioidosis and glanders, respectively. Autotransporters (ATs) comprise a large and diverse family of secreted and outer membrane proteins that includes virulence-associated invasins, adhesins, proteases, and actin-nucleating factors. The B. pseudomallei K96243 genome contains 11 predicted ATs, eight of which share homologs in the B. mallei ATCC 23344 genome. This review distils key findings from in silico, in vitro, and in vivo studies on the ATs of B. pseudomallei and B. mallei. To date, the best characterized of the predicted ATs of B. pseudomallei and B. mallei is BimA, a predicted trimeric AT mediating actin-based motility which varies in sequence and mode of action between Burkholderia species. Of the remaining eight predicted B. pseudomallei trimeric autotransporters, five of which are also present in B. mallei, two (BoaA and BoaB), have been implicated in bacterial adhesion to epithelial cells. Several predicted Burkholderia ATs are recognized by human humoral and cell-mediated immunity, indicating that they are expressed during infection and may be useful for diagnosis and vaccine-mediated protection. Further studies on the mode of secretion and functions of Burkholderia ATs will facilitate the rational design of control strategies.

8.
FEMS Microbiol Rev ; 33(6): 1079-99, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19732156

RESUMO

Melioidosis, a febrile illness with disease states ranging from acute pneumonia or septicaemia to chronic abscesses, was first documented by Whitmore & Krishnaswami (1912). The causative agent, Burkholderia pseudomallei, was subsequently identified as a motile, gram-negative bacillus, which is principally an environmental saprophyte. Melioidosis has become an increasingly important disease in endemic areas such as northern Thailand and Australia (Currie et al., 2000). This health burden, plus the classification of B. pseudomallei as a category B biological agent (Rotz et al., 2002), has resulted in an escalation of research interest. This review focuses on the molecular and cellular basis of pathogenesis in melioidosis, with a comprehensive overview of the current knowledge on how B. pseudomallei can cause disease. The process of B. pseudomallei movement from the environmental reservoir to attachment and invasion of epithelial and macrophage cells and the subsequent intracellular survival and spread is outlined. Furthermore, the diverse assortment of virulence factors that allow B. pseudomallei to become an effective opportunistic pathogen, as well as to avoid or subvert the host immune response, is discussed. With the recent increase in genomic and molecular studies, the current understanding of the infection process of melioidosis has increased substantially, yet, much still remains to be elucidated.


Assuntos
Burkholderia pseudomallei/metabolismo , Burkholderia pseudomallei/patogenicidade , Melioidose/microbiologia , Animais , Burkholderia pseudomallei/genética , Morte Celular , Humanos , Imunidade Inata , Melioidose/imunologia , Melioidose/metabolismo , Melioidose/patologia , Fusão de Membrana , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...