Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Radiat Oncol ; 15(1): 83, 2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32307022

RESUMO

BACKGROUND: Glioblastoma is a rapidly proliferating tumor. Patients bear an inferior prognosis with a median survival time of 14-16 months. Proliferation and repopulation are a major resistance promoting factor for conventionally fractionated radiotherapy. Tumor-Treating-Fields (TTFields) are an antimitotic modality applying low-intensity (1-3 V/cm), intermediate-frequency (100-300 kHz) alternating electric-fields. More recently interference of TTFields with DNA-damage-repair and synergistic effects with radiotherapy were reported in the preclinical setting. This study aims at examining the dosimetric consequences of TTFields applied during the course of radiochemotherapy. METHODS: Cone-beam-computed-tomography (CBCT)-data from the first seven patients of the PriCoTTF-phase-I-trial were used in a predefined way for dosimetric verification and dose-accumulation of the non-coplanar-intensity-modulated-radiotherapy (IMRT)-treatment-plans as well as geometric analysis of the transducer-arrays by which TTFields are applied throughout the course of treatment. Transducer-array-position and contours were obtained from the low-dose CBCT's routinely made for image-guidance. Material-composition of the electrodes was determined and a respective Hounsfield-unit was assigned to the electrodes. After 6D-fusion with the planning-CT, the dose-distribution was recalculated using a Boltzmann-equation-solver (Acuros XB) and a Monte-Carlo-dose-calculation-engine. RESULTS: Overdosage in the scalp in comparison to the treatment plan without electrodes stayed below 8.5% of the prescribed dose in the first 2 mm below and also in deeper layers outside 1cm2 at highest dose as obtained from dose-volume-histogram comparisons. In the clinical target volume (CTV), underdosage was limited to 2.0% due to dose attenuation by the electrodes in terms of D95 and the effective-uniform-dose. Principal-component-analysis (PCA) showed that the first principal-position-component of the variation of repeated array-placement in the direction of the largest variations and the perpendicular second-component spanning a tangential plane on the skull had a standard deviation of 1.06 cm, 1.23 cm, 0.96 cm, and 1.11 cm for the frontal, occipital, left and right arrays for the first and 0.70 cm, 0.71 cm, 0.79 cm, and 0.68 cm, respectively for the second-principal-component. The variations did not differ from patient-to-patient (p > 0.8, Kruskal-Wallis-tests). This motion led to a diminution of the dosimetric effects of the electrodes. CONCLUSION: From a dosimetric point of view, dose deviations in the CTV due to transducer-arrays were not clinically significant in the first 7 patients and confirmed feasibility of combined adjuvant radiochemotherapy and concurrent TTFields. PriCoTTF Trial: A phase I/II trial of TTFields prior and concomitant to radiotherapy in newly diagnosed glioblastoma. DRKS-ID: DRKS00016667. Date of Registration in DRKS: 2019/02/26. Investigator Sponsored/Initiated Trial (IST/IIT): yes. Ethics Approval/Approval of the Ethics Committee: Approved. (leading) Ethics Committee Nr.: 18-8316-MF, Ethik-Kommission der Medizinischen. Fakultät der Universität Duisburg-Essen. EUDAMED-No. (for studies acc. to Medical Devices act): CIV-18-08-025247.


Assuntos
Neoplasias Encefálicas/terapia , Terapia por Estimulação Elétrica , Glioblastoma/terapia , Radiometria , Radioterapia de Intensidade Modulada , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Quimiorradioterapia , Terapia Combinada , Tomografia Computadorizada de Feixe Cônico , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Humanos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Couro Cabeludo/efeitos da radiação , Transdutores/efeitos adversos
3.
Cell Stress Chaperones ; 5(2): 132-8, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11147964

RESUMO

SV40 belongs to a group of DNA tumor viruses which induce the expression of the 70 Kd heat shock proteins, but the meaning of this induction remains unclear. Investigating the role of hsc70 in the SV40 life cycle, we found that the protein translocates to the nucleus late in infection of permissive CV1 cells, in contrast to infected nonpermissive BALB/3T3 and NIH/3T3 cells in which hsc70 remains cytoplasmic. Moreover, the pattern of hsc70 nuclear staining was diffused and clearly distinguishable from that observed after heat shock. In addition hsc70 late in infection coimmunoprecipitated with the viral capsid protein VP1, suggesting a role in the process of viral packaging. Interactions of hsc70 with the early viral oncoprotein T antigen were observed only in nonpermissive cells, indicating that the binding of the above proteins is specific to cells that do not support viral propagation. Finally, treatment of permissive CV1 cells with interferon gamma, a known antiviral cytokine, resulted in hsc70 binding to T antigen. Our results suggest that the role of hsc70 in the process of SV40 infection is directly related to the ability of the host cells to support viral propagation and is clearly different between permissive and nonpermissive cell lines.


Assuntos
Antígenos Transformantes de Poliomavirus/metabolismo , Proteínas do Capsídeo , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP70 , Vírus 40 dos Símios/fisiologia , Células 3T3 , Animais , Células COS , Capsídeo/metabolismo , Imunofluorescência , Proteínas de Choque Térmico HSC70 , Haplorrinos , Interferon gama/farmacologia , Líquido Intracelular/metabolismo , Camundongos , Testes de Precipitina , Ligação Proteica , Vírus 40 dos Símios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...