Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 356: 114579, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964422

RESUMO

The Krüppel-like factors (KLFs) have emerged as important transcriptional regulators of various cellular processes, including neural development. Some of them have been described as intrinsic factors involved in axon regeneration in the central nervous system (CNS) of vertebrates. Zebrafish are known for their ability to regenerate several tissues in adulthood, including the CNS, a capability lost during vertebrate evolution and absent in adult mammals. The role that KLFs could play in this differential ability remains unknown. Therefore, in this study, we analyzed the endogenous response of certain KLFs implicated in axon regeneration (KLFs 6, 7, 9, and 13) during retina development and after axon injury. The results showed that the expression of Klfs 6, 7, and 13 decreases in the developing retina of mice but not in zebrafish, while the mRNA levels of Klf9 strongly increase in both species. The response to injury was further analyzed using optic nerve crush (ONC) as a model of lesion. Our analysis during the acute phase (hours) demonstrated an induction of Klfs 6 and 7 expression exclusively in the zebrafish retina, while Klfs 9 and 13 mRNA levels increased in both species. Further analysis of the chronic response (days) showed that mRNA levels of Klf6 transiently increase in the retinas of both zebrafish and mice, whereas those of Klf7 decrease later after optic nerve injury. In addition, the analysis revealed that the expression of Klf9 decreases, while that of Klf13 increases in the retinas of zebrafish in response to optic nerve injury but remains unaltered in mice. Altogether, these findings support the hypothesis that KLFs may play a role in the differential axon regeneration abilities exhibited by fish and mice.


Assuntos
Fatores de Transcrição Kruppel-Like , Retina , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Retina/metabolismo , Camundongos , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/genética , Regeneração Nervosa/fisiologia , Regeneração Nervosa/genética
2.
PLoS One ; 16(8): e0256207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34403440

RESUMO

Thyroid hormones are messengers that bind to specific nuclear receptors and regulate a wide range of physiological processes in the early stages of vertebrate embryonic development, including neurodevelopment and myelogenesis. We here tested the effects of reduced T3 availability upon the myelination process by treating zebrafish embryos with low concentrations of iopanoic acid (IOP) to block T4 to T3 conversion. Black Gold II staining showed that T3 deficiency reduced the myelin density in the forebrain, midbrain, hindbrain and the spinal cord at 3 and 7 dpf. These observations were confirmed in 3 dpf mbp:egfp transgenic zebrafish, showing that the administration of IOP reduced the fluorescent signal in the brain. T3 rescue treatment restored brain myelination and reversed the changes in myelin-related gene expression induced by IOP exposure. NG2 immunostaining revealed that T3 deficiency reduced the amount of oligodendrocyte precursor cells in 3 dpf IOP-treated larvae. Altogether, the present results show that inhibition of T4 to T3 conversion results in hypomyelination, suggesting that THs are part of the key signaling molecules that control the timing of oligodendrocyte differentiation and myelin synthesis from very early stages of brain development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Larva/genética , Bainha de Mielina/genética , Tiroxina/deficiência , Tri-Iodotironina/deficiência , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Antígenos/genética , Antígenos/metabolismo , Embrião não Mamífero , Desenvolvimento Embrionário , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ácido Iopanoico/farmacologia , Larva/citologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Mesencéfalo/citologia , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/crescimento & desenvolvimento , Mesencéfalo/metabolismo , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Prosencéfalo/citologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/metabolismo , Proteoglicanas/genética , Proteoglicanas/metabolismo , Rombencéfalo/citologia , Rombencéfalo/efeitos dos fármacos , Rombencéfalo/crescimento & desenvolvimento , Rombencéfalo/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Tri-Iodotironina/farmacologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Sci Rep ; 11(1): 9850, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972650

RESUMO

Amphibians are an important vertebrate model system to understand anatomy, genetics and physiology. Importantly, the brain and spinal cord of adult urodels (salamanders) have an incredible regeneration capacity, contrary to anurans (frogs) and the rest of adult vertebrates. Among these amphibians, the axolotl (Ambystoma mexicanum) has gained most attention because of the surge in the understanding of central nervous system (CNS) regeneration and the recent sequencing of its whole genome. However, a complete comprehension of the brain anatomy is not available. In the present study we created a magnetic resonance imaging (MRI) atlas of the in vivo neuroanatomy of the juvenile axolotl brain. This is the first MRI atlas for this species and includes three levels: (1) 82 regions of interest (ROIs) and a version with 64 ROIs; (2) a division of the brain according to the embryological origin of the neural tube, and (3) left and right hemispheres. Additionally, we localized the myelin rich regions of the juvenile brain. The atlas, the template that the atlas was derived from, and a masking file, can be found on Zenodo at https://doi.org/10.5281/zenodo.4595016 . This MRI brain atlas aims to be an important tool for future research of the axolotl brain and that of other amphibians.


Assuntos
Ambystoma mexicanum/anatomia & histologia , Encéfalo/anatomia & histologia , Animais , Atlas como Assunto , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética
4.
Gen Comp Endocrinol ; 305: 113642, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039406

RESUMO

Thyroid hormones (THs) are ancient signaling molecules that contribute to the regulation of metabolism, energy homeostasis and growth. In vertebrates, the hypothalamus-pituitary-thyroid (HPT) axis links the corresponding organs through hormonal signals, including thyrotropin releasing factor (TRF), and thyroid stimulating hormone (TSH) that ultimately activates the synthesis and secretion of THs from the thyroid gland. Although this axis is conserved among most vertebrates, the identity of the hypothalamic TRF that positively regulates TSH synthesis and secretion varies. We review the evolution of the hypothalamic factors that induce TSH secretion, including thyrotropin-releasing hormone (TRH), corticotrophin-releasing hormone (CRH), urotensin-1-3, and sauvagine, and non-mammalian glucagon-like peptide in metazoans. Each of these peptides is part of an extracellular communication unit likely composed of at least 3 elements: the peptide, G-protein coupled receptor and bioavailability regulator, set up on the central neuroendocrine articulation. The bioavailability regulators include a TRH-specific ecto-peptidase, pyroglutamyl peptidase II, and a CRH-binding protein, that together with peptide secretion/transport rate and transduction coupling and efficiency at receptor level shape TRF signal intensity and duration. These vertebrate TRF communication units were coopted from bilaterian ancestors. The bona fide elements appeared early in chordates, and are either used alternatively, in parallel, or sequentially, in different vertebrate classes to control centrally the activity of the HPT axis. Available data also suggest coincidence between apparition of ligand and bioavailability regulator.


Assuntos
Hormônio Liberador de Tireotropina , Tireotropina , Animais , Hormônio Liberador da Corticotropina , Hipotálamo , Glândula Tireoide
5.
Front Biosci (Landmark Ed) ; 25(7): 1305-1323, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32114434

RESUMO

Starvation induces tertiary hypothyroidism in adult rodents. Response of the hypothalamus-pituitary-thyroid (HPT) axis to starvation is stronger in adult males than in females. To improve the description of this sexual dimorphism, we analyzed the dynamics of HPT axis response to fasting at multiple levels. In adult rats of the same cohort, 24 and 48 h of starvation inhibited paraventricular nucleus Trh expression and serum concentrations of TSH and T4 earlier in males than in females, with lower intensity in females than in males. In adult females fasted for 36-72 h, serum TSH concentration decreased after 36 h, when the activity of thyrotropin-releasing hormone (TRH)-degrading ectoenzyme was increased in the median eminence. The kinetics of these events were distinct from those previously observed in male rats. We suggest that the sex difference in TSH secretion kinetics is driven not only at the level of paraventricular nucleus TRH neurons, but also by differences in post-secretory catabolism of TRH, with enhancement of TRH-degrading activity more sustained in male than female animals.


Assuntos
Jejum/metabolismo , Regulação da Expressão Gênica , Núcleo Hipotalâmico Paraventricular/metabolismo , Glândula Tireoide/metabolismo , Animais , Feminino , Masculino , Ratos Wistar , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores do Hormônio Liberador da Tireotropina/genética , Receptores do Hormônio Liberador da Tireotropina/metabolismo , Fatores Sexuais , Tireotropina/sangue , Tireotropina/metabolismo , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/metabolismo , Fatores de Tempo
6.
Artigo em Inglês | MEDLINE | ID: mdl-31293518

RESUMO

Central and peripheral mechanisms that modulate energy intake, partition and expenditure determine energy homeostasis. Thyroid hormones (TH) regulate energy expenditure through the control of basal metabolic rate and thermogenesis; they also modulate food intake. TH concentrations are regulated by the hypothalamus-pituitary-thyroid (HPT) axis, and by transport and metabolism in blood and target tissues. In mammals, hypophysiotropic thyrotropin-releasing hormone (TRH) neurons of the paraventricular nucleus of the hypothalamus integrate energy-related information. They project to the external zone of the median eminence (ME), a brain circumventricular organ rich in neuron terminal varicosities and buttons, tanycytes, other glial cells and capillaries. These capillary vessels form a portal system that links the base of the hypothalamus with the anterior pituitary. Tanycytes of the medio-basal hypothalamus express a repertoire of proteins involved in transport, sensing, and metabolism of TH; among them is type 2 deiodinase, a source of 3,3',5-triiodo-L-thyronine necessary for negative feedback on TRH neurons. Tanycytes subtypes are distinguished by position and phenotype. The end-feet of ß2-tanycytes intermingle with TRH varicosities and terminals in the external layer of the ME and terminate close to the ME capillaries. Besides type 2 deiodinase, ß2-tanycytes express the TRH-degrading ectoenzyme (TRH-DE); this enzyme likely controls the amount of TRH entering portal vessels. TRH-DE is rapidly upregulated by TH, contributing to TH negative feedback on HPT axis. Alterations in energy balance also regulate the expression and activity of TRH-DE in the ME, making ß2-tanycytes a hub for energy-related regulation of HPT axis activity. ß2-tanycytes also express TRH-R1, which mediates positive effects of TRH on TRH-DE activity and the size of ß2-tanycyte end-feet contacts with the basal lamina adjacent to ME capillaries. These end-feet associations with ME capillaries, and TRH-DE activity, appear to coordinately control HPT axis activity. Thus, down-stream of neuronal control of TRH release by action potentials arrival in the external layer of the median eminence, imbricated intercellular processes may coordinate the flux of TRH into the portal capillaries. In conclusion, ß2-tanycytes appear as a critical cellular element for the somatic and post-secretory control of TRH flux into portal vessels, and HPT axis regulation in mammals.

7.
Mol Cell Endocrinol ; 493: 110448, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31100496

RESUMO

Thyroid hormone receptors (TRs) are ligand-dependent transcription factors that activate or repress gene transcription, resulting in the regulation of numerous physiological programs. While 3,3',5-L-triiodothyronine is the TR cognate ligand, these receptors can also be activated by various alternative ligands, including endogenous and synthetic molecules capable of inducing diverse active receptor conformations that influence thyroid hormone-dependent signaling pathways. This review mainly discusses current knowledge on 3,5-diiodo-L-thyronine and 3,5,3'-triiodothyroacetic acid, two endogenous molecules that bind to TRs and regulate gene expression; and the molecular interactions between TRs and ligands, like synthetic thyromimetics developed to target specific TR isoforms for tissue-specific regulation of thyroid-related disorders, or endocrine disruptors that have allowed the design of new analogues and revealed essential amino acids for thyroid hormone binding.


Assuntos
Di-Iodotironinas/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Tironinas/síntese química , Tri-Iodotironina/análogos & derivados , Animais , Mimetismo Biológico , Di-Iodotironinas/química , Desenho de Fármacos , Regulação da Expressão Gênica , Humanos , Ligantes , Especificidade de Órgãos , Receptores dos Hormônios Tireóideos/química , Transdução de Sinais/efeitos dos fármacos , Tironinas/química , Tironinas/farmacologia , Tri-Iodotironina/química , Tri-Iodotironina/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-30930855

RESUMO

The role of thyroid hormones (THs) in development has been extensively studied, however, the specific molecular mechanisms involved are far from being clear. THs act by binding to TH nuclear receptors (TR) that act as ligand-dependent transcription factors to regulate TH-dependent gene expression. Like vertebrates, zebrafish express different isoforms of functional Tr alpha and beta, some of which can bind alternative ligands like 3,5-T2. In this study, we first analyzed the effects of exogenous T3 and 3,5-T2 exposure during embryogenesis. The percentage of affected embryos was similar to those vehicle-injected, suggesting that the early exposure to low TH levels is not sufficient to elicit effects upon the phenotype of the embryo. We then generated crispants for four isoforms of thr to learn more about the role of these receptors in early development. We found that crispant larvae from thraa and a newly identified l-thrb+, but not thrab and canonical thrb1 showed profound deleterious effects upon symmetry and laterality, suggesting early novel roles for these Tr isoforms in the body plan developmental program. Since critical events that determine cell fate start in the late gastrula, we tested if some genes that are expressed during early developmental stages could indeed be TH targets. We identify early development genes, like sox10 and eve, that were specifically over-expressed in thraa and l-thrb+ crispants, suggesting that these specific thr isoforms function as transcription repressors for these genes, while transcription of zic and ets appear to be thraa and l-thrb+-mediated, respectively. Overall, present results show that TH signaling participates in early zebrafish development and identify Tr isoform-specific mediated regulation of early gene expression.

9.
Gen Comp Endocrinol ; 265: 128-132, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29574147

RESUMO

Teleosts are the most numerous class of living vertebrates. They exhibit great diversity in terms of morphology, developmental strategies, ecology and adaptation. In spite of this diversity, teleosts conserve similarities at molecular, cellular and endocrine levels. In the context of thyroidal systems, and as in the rest of vertebrates, thyroid hormones in fish regulate development, growth and metabolism by actively entering the nucleus and interacting with thyroid hormone receptors, the final sensors of this endocrine signal, to regulate gene expression. In general terms, vertebrates express the functional thyroid hormone receptors alpha and beta, encoded by two distinct genes (thra and thrb, respectively). However, different species of teleosts express thyroid hormone receptor isoforms with particular structural characteristics that confer singular functional traits to these receptors. For example, teleosts contain two thra genes and in some species also two thrb; some of the expressed isoforms can bind alternative ligands. Also, some identified isoforms contain deletions or large insertions that have not been described in other vertebrates and that have not yet been functionally characterized. As in amphibians, the regulation of some of these teleost isoforms coincides with the climax of metamorphosis and/or life transitions during development and growth. In this review, we aimed to gain further insights into thyroid signaling from a comparative perspective by proposing a systematic nomenclature for teleost thyroid hormone receptor isoforms and summarize their particular functional features when the information was available.


Assuntos
Peixes/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Animais , Desenvolvimento Embrionário/genética , Peixes/embriologia , Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores dos Hormônios Tireóideos/genética
10.
Mol Cell Endocrinol ; 459: 59-63, 2017 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-28267601

RESUMO

Thyroid hormones, or THs, are well-known regulators of a wide range of biological processes that occur throughout the lifespan of all vertebrates. THs act through genomic mechanisms mediated by thyroid hormone receptors (TRs). The main product of the thyroid gland is thyroxine or T4, which can be further transformed by different biochemical pathways to produce at least 15 active or inactive molecules. T3, a product of T4 outer-ring deiodination, has been recognized as the main bioactive TH. However, growing evidence has shown that other TH derivatives are able to bind to, and/or activate TRs, to induce thyromimetic effects. The compiled data in this review points to at least two of these TR alternative ligands: TRIAC and T2. Taking this into account, non-mammalian models have proven to be advantageous to explore new TH derivatives with potential novel actions, prompting a re-evaluation of the role and mechanism of action of TR alternative ligands that were previously believed to be inactive. The functional implications of these ligands across different vertebrates may require us to reconsider current established notions of thyroid physiology.


Assuntos
Di-Iodotironinas/metabolismo , Invertebrados/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Células Epiteliais da Tireoide/fisiologia , Tiroxina/metabolismo , Tri-Iodotironina/análogos & derivados , Tri-Iodotironina/metabolismo , Animais , Evolução Biológica , Peixes/classificação , Peixes/genética , Peixes/metabolismo , Regulação da Expressão Gênica , Invertebrados/classificação , Invertebrados/genética , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Ligantes , Filogenia , Receptores dos Hormônios Tireóideos/genética , Transdução de Sinais , Especificidade da Espécie , Tiroxina/genética , Tri-Iodotironina/genética
11.
Endocrinology ; 156(7): 2713-23, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25942072

RESUMO

Fasting down-regulates the hypothalamus-pituitary-thyroid (HPT) axis activity through a reduction of TRH synthesis in neurons of the parvocellular paraventricular nucleus of the hypothalamus (PVN). These TRH neurons project to the median eminence (ME), where TRH terminals are close to the cytoplasmic extensions of ß2 tanycytes. Tanycytes express pyroglutamyl peptidase II (PPII), the TRH-degrading ectoenzyme that controls the amount of TRH that reaches the anterior pituitary. We tested the hypothesis that regulation of ME PPII activity is another mechanism by which fasting affects the activity of the HPT axis. Semiquantitative in situ hybridization histochemistry data indicated that PPII and deiodinase 2 mRNA levels increased in tanycytes after 48 hours of fasting. This increase was transitory, followed by an increase of PPII activity in the ME, and a partial reversion of the reduction in PVN pro-TRH mRNA levels and the number of TRH neurons detected by immunohistochemistry. In fed animals, adrenalectomy and corticosterone treatment did not change ME PPII activity 72 hours later. Methimazole-induced hypothyroidism produced a profound drop in tanycytes PPII mRNA levels, which was reverted by 3 days of treatment with T4. The activity of thyroliberinase, the serum isoform of PPII, was increased at most fasting time points studied. We conclude that delayed increases in both the ME PPII as well as the thyroliberinase activities in fasted male rats may facilitate the maintenance of the deep down-regulation of the HPT axis function, despite a partial reactivation of TRH expression in the PVN.


Assuntos
Aminopeptidases/genética , Células Ependimogliais/enzimologia , Jejum/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Eminência Mediana/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , RNA Mensageiro/metabolismo , Hormônio Liberador de Tireotropina/metabolismo , Adrenalectomia , Aminopeptidases/efeitos dos fármacos , Aminopeptidases/metabolismo , Animais , Antitireóideos/farmacologia , Corticosterona/farmacologia , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotireoidismo , Iodeto Peroxidase/genética , Masculino , Metimazol/farmacologia , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Precursores de Proteínas/genética , Ácido Pirrolidonocarboxílico/metabolismo , RNA Mensageiro/efeitos dos fármacos , Ratos , Hormônio Liberador de Tireotropina/efeitos dos fármacos , Hormônio Liberador de Tireotropina/genética , Tiroxina/farmacologia , Iodotironina Desiodinase Tipo II
12.
J Pharmacol Exp Ther ; 342(1): 222-31, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22532627

RESUMO

Thyrotropin-releasing hormone (TRH; pGlu-His-Pro-NH(2)) has multiple, but transient, homeostatic functions in the brain. It is hydrolyzed in vitro by pyroglutamyl peptidase II (PPII), a narrow specificity ectoenzyme with a preferential localization in the brain, but evidence that PPII controls TRH communication in the brain in vivo is scarce. We therefore studied in male Wistar rats the distribution of PPII mRNA in the septum and the consequence of PPII inhibition on the analeptic effect of TRH injected into the medial septum. Twelve to 14% of cell profiles expressed PPII mRNA in the medial septum-diagonal band of Broca; in this region the specific activity of PPII was relatively high. Twenty to 35% of PPII mRNA-labeled profiles were positive for TRH-receptor 1 (TRH-R1) mRNA. The intramedial septum injection of TRH reduced, in a dose-dependent manner, the duration of ethanol-induced loss of righting reflex (LORR). Injection of the PPII inhibitor pGlu-Asn-Pro-7-amido-4-methylcoumarin into the medial septum enhanced the effect of TRH. The injection of a phosphinic TRH analog, a higher-affinity inhibitor of PPII, diminished the duration of LORR by itself. In contrast, the intraseptal injection of pGlu-Asp-Pro-NH(2), a peptide that did not inhibit PPII activity, or an inhibitor of prolyl oligopeptidase did not change the duration of LORR. We conclude that in the medial septum PPII activity may limit TRH action, presumably by reducing the concentration of TRH in the extracellular fluid around cells coexpressing PPII and TRH-R1.


Assuntos
Aminopeptidases/antagonistas & inibidores , Estimulantes do Sistema Nervoso Central/farmacologia , Ácido Pirrolidonocarboxílico/análogos & derivados , Septo do Cérebro/efeitos dos fármacos , Septo do Cérebro/enzimologia , Hormônio Liberador de Tireotropina/farmacologia , Aminopeptidases/genética , Aminopeptidases/metabolismo , Animais , Masculino , Peptídeos/farmacologia , Prolil Oligopeptidases , Ácido Pirrolidonocarboxílico/antagonistas & inibidores , Ácido Pirrolidonocarboxílico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores do Hormônio Liberador da Tireotropina/genética , Receptores do Hormônio Liberador da Tireotropina/metabolismo , Reflexo de Endireitamento/genética , Septo do Cérebro/metabolismo , Serina Endopeptidases/farmacologia
13.
Peptides ; 29(11): 1953-64, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18703099

RESUMO

Ecto-peptidases modulate the action of peptides in the extracellular space. The relationship between peptide receptor and ecto-peptidase localization, and the physiological role of peptidases is poorly understood. Current evidence suggests that pyroglutamyl peptidase II (PPII) inactivates neuronally released thyrotropin-releasing hormone (TRH). The impact of PPII localization in the anterior pituitary on the endocrine activities of TRH is unknown. We have studied whether PPII influences TRH signaling in anterior pituitary cells in primary culture. In situ hybridization (ISH) experiments showed that PPII mRNA was expressed only in 5-6% of cells. ISH for PPII mRNA combined with immunocytochemistry for prolactin, beta-thyrotropin, or growth hormone, showed that 66% of PPII mRNA expressing cells are lactotrophs, 34% somatotrophs while none are thyrotrophs. PPII activity was reduced using a specific phosphorothioate antisense oligodeoxynucleotide or inhibitors. Compared with mock or scrambled oligodeoxynucleotide-treated controls, knock-down of PPII expression by antisense targeting increased TRH-induced release of prolactin, but not of thyrotropin. Similar data were obtained with either a transition-state or a tight binding inhibitor. These results demonstrate that PPII expression in lactotrophs coincides with its ability to control prolactin release. It may play a specialized role in TRH signaling in the anterior pituitary. Anterior pituitary ecto-peptidases may fulfill unique functions associated with their restricted cell-specific expression.


Assuntos
Aminopeptidases/fisiologia , Adeno-Hipófise/enzimologia , Prolactina/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Hormônio Liberador de Tireotropina/fisiologia , Animais , Células Cultivadas , Feminino , Hibridização In Situ , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...