Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236087

RESUMO

We present the development of an experimental platform that can collect four frames of x-ray diffraction data along a single line of sight during laser-driven, dynamic-compression experiments at the National Ignition Facility. The platform is comprised of a diagnostic imager built around ultrafast sensors with a 2-ns integration time, a custom target assembly that serves also to shield the imager, and a 10-ns duration, quasi-monochromatic x-ray source produced by laser-generated plasma. We demonstrate the performance with diffraction data for Pb ramp compressed to 150 GPa and illuminated by a Ge x-ray source that produces ∼7 × 1011, 10.25-keV photons/ns at the 400 µm diameter sample.

2.
Rev Sci Instrum ; 93(12): 123902, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586918

RESUMO

This study investigates methods to optimize quasi-monochromatic, ∼10 ns long x-ray sources (XRS) for time-resolved x-ray diffraction measurements of phase transitions during dynamic laser compression measurements at the National Ignition Facility (NIF). To support this, we produce continuous and pulsed XRS by irradiating a Ge foil with NIF lasers to achieve an intensity of 2 × 1015 W/cm2, optimizing the laser-to-x-ray conversion efficiency. Our x-ray source is dominated by Ge He-α line emission. We discuss methods to optimize the source to maintain a uniform XRS for ∼10 ns, mitigating cold plasma and higher energy x-ray emission lines.

3.
Nat Commun ; 13(1): 2260, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477934

RESUMO

There has been considerable recent interest in the high-pressure behavior of silicon carbide, a potential major constituent of carbon-rich exoplanets. In this work, the atomic-level structure of SiC was determined through in situ X-ray diffraction under laser-driven ramp compression up to 1.5 TPa; stresses more than seven times greater than previous static and shock data. Here we show that the B1-type structure persists over this stress range and we have constrained its equation of state (EOS). Using this data we have determined the first experimentally based mass-radius curves for a hypothetical pure SiC planet. Interior structure models are constructed for planets consisting of a SiC-rich mantle and iron-rich core. Carbide planets are found to be ~10% less dense than corresponding terrestrial planets.

5.
Sci Rep ; 12(1): 715, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027608

RESUMO

Recent discoveries of water-rich Neptune-like exoplanets require a more detailed understanding of the phase diagram of H2O at pressure-temperature conditions relevant to their planetary interiors. The unusual non-dipolar magnetic fields of ice giant planets, produced by convecting liquid ionic water, are influenced by exotic high-pressure states of H2O-yet the structure of ice in this state is challenging to determine experimentally. Here we present X-ray diffraction evidence of a body-centered cubic (BCC) structured H2O ice at 200 GPa and ~ 5000 K, deemed ice XIX, using the X-ray Free Electron Laser of the Linac Coherent Light Source to probe the structure of the oxygen sub-lattice during dynamic compression. Although several cubic or orthorhombic structures have been predicted to be the stable structure at these conditions, we show this BCC ice phase is stable to multi-Mbar pressures and temperatures near the melt boundary. This suggests variable and increased electrical conductivity to greater depths in ice giant planets that may promote the generation of multipolar magnetic fields.

6.
Rev Sci Instrum ; 92(5): 053904, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243269

RESUMO

We present the results of experiments to produce a 10 ns-long, quasi-monochromatic x-ray source. This effort is needed to support time-resolved x-ray diffraction (XRDt) measurements of phase transitions during laser-driven dynamic compression experiments at the National Ignition Facility. To record XRDt of phase transitions as they occur, we use high-speed (∼1 ns) gated hybrid CMOS detectors, which record multiple frames of data over a timescale of a few to tens of ns. Consequently, to make effective use of these imagers, XRDt needs the x-ray source to be narrow in energy and uniform in time as long as the sensors are active. The x-ray source is produced by a laser irradiated Ge foil. Our results indicate that the x-ray source lasts during the whole duration of the main laser pulse. Both time-resolved and time-integrated spectral data indicate that the line emission is dominated by the He-α complex over higher energy emission lines. Time-integrated spectra agree well with a one-dimensional Cartesian simulation using HYDRA that predicts a conversion efficiency of 0.56% when the incident intensity is 2 × 1015 W/cm2 on a Ge backlighter.

7.
Phys Rev Lett ; 126(25): 255701, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34241515

RESUMO

Tantalum was once thought to be the canonical bcc metal, but is now predicted to transition to the Pnma phase at the high pressures and temperatures expected along the principal Hugoniot. Furthermore, there remains a significant discrepancy between a number of static diamond anvil cell experiments and gas gun experiments in the measured melt temperatures at high pressures. Our in situ x-ray diffraction experiments on shock compressed tantalum show that it does not transition to the Pnma phase or other candidate phases at high pressure. We observe incipient melting at approximately 254±15 GPa and complete melting by 317±10 GPa. These transition pressures from the nanosecond experiments presented here are consistent with what can be inferred from microsecond gas gun sound velocity measurements. Furthermore, the observation of a coexistence region on the Hugoniot implies the lack of significant kinetically controlled deviation from equilibrium behavior. Consequently, we find that kinetics of phase transitions cannot be used to explain the discrepancy between static and dynamic measurements of the tantalum melt curve. Using available high pressure thermodynamic data for tantalum and our measurements of the incipient and complete melting transition pressures, we are able to infer a melting temperature 8070_{-750}^{+1250} K at 254±15 GPa, which is consistent with ambient and a recent static high pressure melt curve measurement.

8.
Nature ; 589(7843): 532-535, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33505034

RESUMO

Carbon is the fourth-most prevalent element in the Universe and essential for all known life. In the elemental form it is found in multiple allotropes, including graphite, diamond and fullerenes, and it has long been predicted that even more structures can exist at pressures greater than those at Earth's core1-3. Several phases have been predicted to exist in the multi-terapascal regime, which is important for accurate modelling of the interiors of carbon-rich exoplanets4,5. By compressing solid carbon to 2 terapascals (20 million atmospheres; more than five times the pressure at Earth's core) using ramp-shaped laser pulses and simultaneously measuring nanosecond-duration time-resolved X-ray diffraction, we found that solid carbon retains the diamond structure far beyond its regime of predicted stability. The results confirm predictions that the strength of the tetrahedral molecular orbital bonds in diamond persists under enormous pressure, resulting in large energy barriers that hinder conversion to more-stable high-pressure allotropes1,2, just as graphite formation from metastable diamond is kinetically hindered at atmospheric pressure. This work nearly doubles the highest pressure at which X-ray diffraction has been recorded on any material.

9.
Phys Rev Lett ; 125(16): 165701, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33124844

RESUMO

Equation-of-state (pressure, density, temperature, internal energy) and reflectivity measurements on shock-compressed CO_{2} at and above the insulating-to-conducting transition reveal new insight into the chemistry of simple molecular systems in the warm-dense-matter regime. CO_{2} samples were precompressed in diamond-anvil cells to tune the initial densities from 1.35 g/cm^{3} (liquid) to 1.74 g/cm^{3} (solid) at room temperature and were then shock compressed up to 1 TPa and 93 000 K. Variation in initial density was leveraged to infer thermodynamic derivatives including specific heat and Gruneisen coefficient, exposing a complex bonded and moderately ionized state at the most extreme conditions studied.

10.
Sci Rep ; 10(1): 14564, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32884061

RESUMO

We present a method to determine the bulk temperature of a single crystal diamond sample at an X-Ray free electron laser using inelastic X-ray scattering. The experiment was performed at the high energy density instrument at the European XFEL GmbH, Germany. The technique, based on inelastic X-ray scattering and the principle of detailed balance, was demonstrated to give accurate temperature measurements, within [Formula: see text] for both room temperature diamond and heated diamond to 500 K. Here, the temperature was increased in a controlled way using a resistive heater to test theoretical predictions of the scaling of the signal with temperature. The method was tested by validating the energy of the phonon modes with previous measurements made at room temperature using inelastic X-ray scattering and neutron scattering techniques. This technique could be used to determine the bulk temperature in transient systems with a temporal resolution of 50 fs and for which accurate measurements of thermodynamic properties are vital to build accurate equation of state and transport models.

11.
Rev Sci Instrum ; 91(4): 043902, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357733

RESUMO

We report details of an experimental platform implemented at the National Ignition Facility to obtain in situ powder diffraction data from solids dynamically compressed to extreme pressures. Thin samples are sandwiched between tamper layers and ramp compressed using a gradual increase in the drive-laser irradiance. Pressure history in the sample is determined using high-precision velocimetry measurements. Up to two independently timed pulses of x rays are produced at or near the time of peak pressure by laser illumination of thin metal foils. The quasi-monochromatic x-ray pulses have a mean wavelength selectable between 0.6 Å and 1.9 Å depending on the foil material. The diffracted signal is recorded on image plates with a typical 2θ x-ray scattering angle uncertainty of about 0.2° and resolution of about 1°. Analytic expressions are reported for systematic corrections to 2θ due to finite pinhole size and sample offset. A new variant of a nonlinear background subtraction algorithm is described, which has been used to observe diffraction lines at signal-to-background ratios as low as a few percent. Variations in system response over the detector area are compensated in order to obtain accurate line intensities; this system response calculation includes a new analytic approximation for image-plate sensitivity as a function of photon energy and incident angle. This experimental platform has been used up to 2 TPa (20 Mbar) to determine the crystal structure, measure the density, and evaluate the strain-induced texturing of a variety of compressed samples spanning periods 2-7 on the periodic table.

12.
Phys Rev E ; 101(2-1): 023204, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168658

RESUMO

We report measurements of K-shell fluorescence lines induced by fast electrons in ramp-compressed Co targets. The fluorescence emission was stimulated by fast electrons generated through short-pulse laser-solid interaction with an Al target layer. Compression up to 2.1× solid density was achieved while maintaining temperatures well below the Fermi energy, effectively removing the thermal effects from consideration. We observed small but unambiguous redshifts in the Kß fluorescence line relative to unshifted Cu Kα. Redshifts up to 2.6 eV were found to increase with compression and to be consistent with predictions from self-consistent models based on density-functional theory.

13.
Phys Rev Lett ; 123(24): 245501, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922830

RESUMO

We present molecular dynamics simulations of shock and release in micron-scale tantalum crystals that exhibit postbreakout temperatures far exceeding those expected under the standard assumption of isentropic release. We show via an energy-budget analysis that this is due to plastic-work heating from material strength that largely counters thermoelastic cooling. The simulations are corroborated by experiments where the release temperatures of laser-shocked tantalum foils are deduced from their thermal strains via in situ x-ray diffraction and are found to be close to those behind the shock.

14.
Rev Sci Instrum ; 90(12): 125113, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31893795

RESUMO

The use of x-ray diffraction (XRD) measurements in laser-driven dynamic compression experiments at high-power laser facilities is becoming increasingly common. Diffraction allows one to probe in situ the transformations occurring at the atomic level at extreme conditions of pressure, temperature, and time scale. In these measurements, the x-ray source is generated by irradiation of a solid foil. Under certain laser drive conditions, quasimonochromatic He-α radiation is generated. Careful analysis of the x-ray source plasma spectra reveals that this radiation is not a single line emission and that monochromaticity is highly dependent on the laser irradiance. In this work, we analyze how the spectra emitted by laser-irradiated copper, germanium, and iron foils at the Omega Laser vary depending on different laser drive conditions and discuss the implications for XRD experiments.

15.
Phys Rev Lett ; 120(26): 265502, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30004719

RESUMO

We have used femtosecond x-ray diffraction to study laser-shocked fiber-textured polycrystalline tantalum targets as the 37-253 GPa shock waves break out from the free surface. We extract the time and depth-dependent strain profiles within the Ta target as the rarefaction wave travels back into the bulk of the sample. In agreement with molecular dynamics simulations, the lattice rotation and the twins that are formed under shock compression are observed to be almost fully eliminated by the rarefaction process.

17.
Phys Rev Lett ; 119(17): 175702, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29219452

RESUMO

Nanosecond in situ x-ray diffraction and simultaneous velocimetry measurements were used to determine the crystal structure and pressure, respectively, of ramp-compressed aluminum at stress states between 111 and 475 GPa. The solid-solid Al phase transformations, fcc-hcp and hcp-bcc, are observed at 216±9 and 321±12 GPa, respectively, with the bcc phase persisting to 475 GPa. The high-pressure crystallographic texture of the hcp and bcc phases suggests close-packed or nearly close-packed lattice planes remain parallel through both transformations.

18.
Nature ; 550(7677): 496-499, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29072261

RESUMO

Pressure-driven shock waves in solid materials can cause extreme damage and deformation. Understanding this deformation and the associated defects that are created in the material is crucial in the study of a wide range of phenomena, including planetary formation and asteroid impact sites, the formation of interstellar dust clouds, ballistic penetrators, spacecraft shielding and ductility in high-performance ceramics. At the lattice level, the basic mechanisms of plastic deformation are twinning (whereby crystallites with a mirror-image lattice form) and slip (whereby lattice dislocations are generated and move), but determining which of these mechanisms is active during deformation is challenging. Experiments that characterized lattice defects have typically examined the microstructure of samples after deformation, and so are complicated by post-shock annealing and reverberations. In addition, measurements have been limited to relatively modest pressures (less than 100 gigapascals). In situ X-ray diffraction experiments can provide insights into the dynamic behaviour of materials, but have only recently been applied to plasticity during shock compression and have yet to provide detailed insight into competing deformation mechanisms. Here we present X-ray diffraction experiments with femtosecond resolution that capture in situ, lattice-level information on the microstructural processes that drive shock-wave-driven deformation. To demonstrate this method we shock-compress the body-centred-cubic material tantalum-an important material for high-energy-density physics owing to its high shock impedance and high X-ray opacity. Tantalum is also a material for which previous shock compression simulations and experiments have provided conflicting information about the dominant deformation mechanism. Our experiments reveal twinning and related lattice rotation occurring on the timescale of tens of picoseconds. In addition, despite the common association between twinning and strong shocks, we find a transition from twinning to dislocation-slip-dominated plasticity at high pressure (more than 150 gigapascals), a regime that recovery experiments cannot accurately access. The techniques demonstrated here will be useful for studying shock waves and other high-strain-rate phenomena, as well as a broad range of processes induced by plasticity.

19.
Phys Rev Lett ; 119(2): 025701, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28753373

RESUMO

Time-resolved x-ray diffraction (XRD) of compressed liquid water shows transformation to ice VII in 6 nsec, revealing crystallization rather than amorphous solidification during compression freezing. Application of classical nucleation theory indicates heterogeneous nucleation and one-dimensional (e.g., needlelike) growth. These first XRD data demonstrate rapid growth kinetics of ice VII with implications for fundamental physics of diffusion-mediated crystallization and thermodynamic modeling of collision or impact events on ice-rich planetary bodies.

20.
Phys Rev Lett ; 115(9): 095701, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26371663

RESUMO

The melting of bismuth in response to shock compression has been studied using in situ femtosecond x-ray diffraction at an x-ray free electron laser. Both solid-solid and solid-liquid phase transitions are documented using changes in discrete diffraction peaks and the emergence of broad, liquid scattering upon release from shock pressures up to 14 GPa. The transformation from the solid state to the liquid is found to occur in less than 3 ns, very much faster than previously believed. These results are the first quantitative measurements of a liquid material obtained on shock release using x-ray diffraction, and provide an upper limit for the time scale of melting of bismuth under shock loading.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...