Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31535927

RESUMO

The colour additives D&C Orange No. 5 (O5) and its lakes (O5L) are subject to batch certification by the U.S. Food and Drug Administration (FDA) to ensure compliance with specifications in the Code of Federal Regulations (CFR). The present study reports the development of a high-performance liquid chromatography (HPLC) method for the quantitative determination of seven CFR-specified components in O5 and O5L - fluorescein and six brominated fluoresceins. The analytes were quantified using six-point calibration curves with data points (w/w) that ranged as follows: 20.0-70.0% for 4',5'-dibromofluorescein; 9.8-44.1% for 2',4',5'-tribromofluorescein; 1.01-15.2% for 2',4',5',7'-tetrabromofluorescein; 0.10-3.12% for 2',4'-dibromofluorescein; 0.10-3.06% for 2',5'-dibromofluorescein; 0.11-2.85% for 4'-bromofluorescein; and 0.10-2.02% for fluorescein. For all seven analytes, the HPLC instrument response was linear (R2 > 0.999) over the tested concentration ranges and the limits of detection (0.01-1.55%) were well below the CFR-specified levels. Other validation data showed good analyte recovery (87.91-101.73%) as well as method precision measured by the relative standard deviation (0.53-1.56%). The new method was applied to the analysis of test portions from 15 batches of O5 and eight batches of O5L submitted to FDA for certification by domestic and foreign manufacturers. Compared to the thin-layer chromatography/spectrophotometric procedure currently used for routine batch-certification analyses, the new method was found to be more sensitive, simpler to implement, and significantly faster, requiring 25 minutes rather than six hours to analyse one sample.


Assuntos
Fluoresceínas/análise , Corantes de Alimentos/análise , Contaminação de Alimentos/análise , Cromatografia Líquida de Alta Pressão , Halogenação , Estrutura Molecular
2.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1087-1088: 138-141, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29738963

RESUMO

Centrifugal precipitation chromatography (CpC) is a powerful chromatographic technique invented in the year 2000 but so far very little applied. The method combines dialysis, counter-current and salting out processes. The separation rotor consists of two identical spiral channels separated by a dialysis membrane (6-8 K MW cut-off) in which the upper channel is eluted with an ammonium sulfate gradient and the lower channel with water, and the mixtures are separated according to their solubility in ammonium sulfate as a chromatographic technique. In the present study, the method was successfully applied for separation and purification of R-phycoerythrin (R-PE), a protein widely used as a fluorescent probe, from the red alga Gracilaria lemaneiformis. The separation was performed with the elution of ammonium sulfate from 50% to 0% in 21.5 h at a flow rate of 0.5 ml/min, while the lower channel was eluted with water at a flow rate of 0.05 ml/min after sample charge, and the column was rotated at 200 rpm. After a single run, the absorbance ratio A565/A280 (a criterion for the purity of R-PE) was increased from 0.5 of the crude to 6.5. The purified R-PE exhibited a typical "three peaks" spectrum with absorbance maximum at 497, 538 and 565 nm. The Native-PAGE showed one single protein band and 20 kDa (subunits α and ß) and 30 kDa (subunit γ) can be observed in SDS-PAGE analysis which were consistent with the (αß)6γ subunit composition of R-PE. The results indicated that CpC is an efficient method to obtain protein with the high purity from a complex source.


Assuntos
Centrifugação/métodos , Cromatografia/métodos , Gracilaria/química , Ficoeritrina/isolamento & purificação , Extratos Vegetais/química , Ficoeritrina/análise , Ficoeritrina/química
3.
J Chromatogr A ; 1508: 7-15, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28619589

RESUMO

Spiral countercurrent-chromatography has great potential for improving the capacity and efficiency of purification of secondary metabolites, and here we describe applications useful for the isolation of flavonoids from the widely used South African medicinal plant, Sutherlandia frutescens (L.) R. Br. In the spiral tubing support rotor, STS-4 for high-speed counter-current chromatography, several polar butanol aqueous solvent systems were selected using a logK plot, and the novel flavonol glycosides (sutherlandins A-D) were well separated by the optimized solvent system (ethyl acetate:n-butanol:acetic acid:water; 5:1:0.3:6 by vol.). The yield of purified flavonoids from 0.9g extract varied from 8.6mg to 54mg of the sutherlandins for a total of 85.3mg. The same extract was fractionated in the new STS-12 rotor of the same outside dimensions but with more radial channels forming 12 loops of the tubing instead of 4. The rotor holds more layers and increased length of tubing. From 0.9g extract the STS-12 rotor yielded more recovery of 110.4mg total with amounts varying from 11.2mg to 64mg of the sutherlandins and apparent increased separation efficiency as noted by less volume of each fraction peak. Thus from 1-g amounts of extract, good recovery of the flavonoids was achieved in the butanol aqueous solvent system.


Assuntos
Distribuição Contracorrente/métodos , Fabaceae/química , Extratos Vegetais/isolamento & purificação , Distribuição Contracorrente/instrumentação , Flavonoides/análise , Flavonoides/isolamento & purificação , Extratos Vegetais/análise , Plantas Medicinais/química
4.
J Chromatogr A ; 1483: 93-100, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049583

RESUMO

Over the last decade man-made carbon nanostructures have shown great promise in electronic applications, but they are produced as very heterogeneous mixtures with different properties so the achievement of a significant commercial application has been elusive. The dimensions of single-wall carbon nanotubes are generally a nanometer wide, up to hundreds of microns long and the carbon nanotubes have anisotropic structures. They are processed to have shorter lengths but they need to be sorted by diameter and chirality. Thus counter-current chromatography methods developed for large molecules are applied to separate these compounds. A modified mixer-settler spiral CCC rotor made with 3 D printed disks was used with a polyethylene glycol-dextran 2-phase solvent system and a surfactant gradient to purify the major species in a commercial preparation. We isolated the semi-conducting single walled carbon nanotube chiral species identified by UV spectral analysis. The further development of spiral counter-current chromatography instrumentation and methods will enable the scalable purification of carbon nanotubes useful for the next generation electronics.


Assuntos
Distribuição Contracorrente/métodos , Nanotubos de Carbono/química , Semicondutores , Técnicas Biossensoriais , Cor , Distribuição Contracorrente/instrumentação , Nanotecnologia , Pós , Soluções , Solventes/química
5.
ACS Omega ; 2(3): 1156-1162, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023629

RESUMO

Single-walled carbon nanotubes (SWCNTs) are synthetic materials that hold great promise for electronics that are smaller and more versatile than the current silica-based technologies. But as-produced SWCNTs are generally a mixture of nanotubes with different structures that have vastly different properties. Separating these SWCNTs from multiwalled and metallic carbon nanotubes is vital to explore their individual properties and commercial utility ranging from optics to semiconductors. Compounding the problem of commercial investigation is that the semiconducting SWCNTs are also a mixture of different diameters and/or chiralities with different properties. Analyzing properties of enriched semiconducting SWCNT chiralities has only recently been possible through separation techniques such as aqueous two-phase solvent systems. Our study illustrates a semipreparative spiral countercurrent chromatography (CCC) separation of a commercial mixture of SWCNTs into distinct enriched fractions. A new mixer-settler spiral disk rotor was applied in this study, in which we compare the enriched SWCNTs for their effectiveness in biosensors with a high-throughput model assay, followed by antibody-mediated detection of Escherichia coli. Our results demonstrate that CCC-enriched responsive SWCNTs for biosensors can be used in our model assay, as well as for the detection of E. coli. To date, we believe that this is the first study along with Liu et al. [Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nat. Commun.2012, 3, 1199] to demonstrate a specific utility of separated SWCNT species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...