Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 2): 214-222, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35411859

RESUMO

A size-strain line-broadening analysis of the XRPD patterns and Raman spectra for two anatase/brookite (TiO2)-based nanocomposites with carbon (C) was carried out and the results compared with those of a similar sample free of carbon. The crystal structures and microstructures of anatase and brookite, as well as their relative abundance ratio, have been refined from XRPD data by the Rietveld method (the low amount of carbon is neglected). The XRPD size-strain analysis resulted in reliable structure and microstructure results for both anatase and brookite. The experimental Raman spectra of all the samples in the region 100-200 cm-1 are dominated by a strong feature primarily composed of the most intense modes of anatase (Eg) and brookite (A1g). The anatase crystallite sizes of 14-17 nm, estimated by XRPD, suggest the application of the phonon confinement model (PCM) for the analysis of the anatase Eg mode, whereas the relatively large brookite crystallite size (27-29 nm) does not imply the use of the PCM for the brookite A1g mode. Superposition of the anatase Eg mode profile, calculated by the PCM, and the Lorentzian shape of the brookite A1g mode provide an appropriate simulation of the change in the dominant Raman feature in the spectra of TiO2-based nanocomposites with carbon. Raman spectra measured in the high-frequency range (1000-2000 cm-1) provide information on carbon in the investigated nanocomposite materials. The results from field-emission scanning electron microscope (SEM), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy and nitrogen physisorption measurements support the XRPD and Raman results.

2.
Soft Matter ; 17(26): 6477-6485, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34137771

RESUMO

Structural and pigment colorations are omnipresent in insects, producing a range of colors for camouflage, warning, mimicry and other strategies necessary for survival. Structural coloration has attracted a lot of attention due to its significance in biophotonics, biomimetics and even esthetic appeal. The coupling of structural and pigment colorations has been largely unnoticed. Herein we show how pigments, scattering and interference work together in two-dimensional waveguiding structures to produce the coloration of Jordanita globulariae (Huebner, 1793), a moth whose forewings sparkle with slightly iridescent green scales. We show that subwavelength structures scatter and couple light into a concave multilayered structure to enhance the absorption of pigments. A finite element method (FEM) model, adequately describing the photonic properties of J. globulariae, was developed based on the nanoscale architecture of the insect's wing scales. The principle of absorption enhanced by scattering and waveguiding is present in many insect species and might be imitated to tailor the spectral properties of optical devices.


Assuntos
Mariposas , Animais , Biomimética , Pigmentação , Asas de Animais
3.
J Therm Biol ; 98: 102932, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34016354

RESUMO

Convective, conductive and radiative mechanisms of thermal management are extremely important for life. Photonic structures, used to detect infrared radiation (IR) and enhance radiative energy exchange, were observed in a number of organisms. Here we report on sophisticated radiative mechanisms used by Morimus asper funereus, a longicorn beetle whose elytra possess a suitably aligned array of lenslets and blackbodies. Additionally, a dense array of microtrichia hyperuniformly covers blackbodies and operates as a stochastic, full-bandgap, IR-photonic structure. All these features, whose characteristic dimensions cover a range from several hundred down to a few micrometres, operate synergistically to improve the absorption, emission and, possibly, detection of IR radiation. We present a morphological characterization of the elytron, thermal imaging measurements and a theoretical IR model of insect elytron, uncovering a synergistic operation of all structures.


Assuntos
Temperatura Corporal , Besouros/anatomia & histologia , Besouros/fisiologia , Animais , Besouros/ultraestrutura , Raios Infravermelhos , Microscopia Eletrônica de Varredura , Fótons , Termografia , Microtomografia por Raio-X
4.
Zoology (Jena) ; 142: 125772, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32688245

RESUMO

Morphology of the pygidial glands and chemical composition of their secretions in adults of four ground beetle representatives of the Pterostichini tribe (Coleoptera: Carabidae) were analysed. Molops (Stenochoromus) montenegrinus, Pterostichus (Cophosus) cylindricus, P. (Feronidius) melas and P. (Pseudomaseus) nigrita were chemically tested, while the latter three species were morphologically investigated. Pterostichus (C.) cylindricus, P. (P.) nigrita and M. (S.) montenegrinus were chemically studied for the first time. Altogether, 23 chemical compounds were isolated using gas chromatography-mass spectrometry (GC-MS), of which some are new for Pterostichini or even Carabidae. Methacrylic acid was present in all species analysed. It was predominant in the secretion extract of P. (C.) cylindricus and P. (F.) melas. Isobutyric and 2-methylbutyric acids were the major components in the secretion of M. (S.) montenegrinus. Undecane, methacrylic and tiglic acids were the main components in the secretion of P. (P.) nigrita. The simplest chemical mixture was found in P. (C.) cylindricus (two compounds), while the most complex one was detected in P. (P.) nigrita (15 compounds). No significant differences in the chemical composition of the pygidial gland secretions were evidenced in P. (C.) cylindricus sampled from the same area and in the same season in two different years. Morphology of the pygidial glands of the studied species was analysed for the first time. Morphological features of the pygidial glands were observed using bright-field microscopy and nonlinear microscopy and described in details.


Assuntos
Secreções Corporais/química , Besouros/anatomia & histologia , Glândulas Exócrinas/anatomia & histologia , Animais , Besouros/fisiologia , Glândulas Exócrinas/fisiologia , Especificidade da Espécie
5.
J Biophotonics ; 12(12): e201900218, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31452335

RESUMO

Modern document protection relies on the simultaneous combination of many optical features with micron and submicron structures, whose complexity is the main obstacle for unauthorized copying. In that sense, documents are best protected by the diffractive optical elements generated lithographically and mass-produced by embossing. The problem is that the resulting security elements are identical, facilitating mass-production of both original and counterfeited documents. Here, we prove that each butterfly wing-scale is structurally and optically unique and can be used as an inimitable optical memory tag and applied for document security. Wing-scales, exhibiting angular variability of their color, were laser-cut and bleached to imprint cryptographic information of an authorized issuer. The resulting optical memory tag is extremely durable, as verified by several century-old insect specimens still retaining their coloration. The described technique is simple, amenable to mass-production, low cost and easy to integrate within the existing security infrastructure.


Assuntos
Biomimética , Borboletas/anatomia & histologia , Documentação , Fenômenos Ópticos , Segurança , Asas de Animais , Animais
6.
Zootaxa ; 4711(1): zootaxa.4711.1.9, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-32230512

RESUMO

Leptomeson Jeannel, 1924, originally treated as a subgenus of Anthroherpon Reitter, 1889 (Jeannel, 1924), was erected to a distinct genus by Guéorguiev (1990). It currently includes 13 endemic taxa (nine species and four subspecies) (Perreau, 2015), of which five species are recently described (Giachino et al., 2011). All Leptomeson taxa are troglobitic, montane or insular, and are distributed in a narrow Dinaric area in the proximity to the Adriatic Sea coast belonging to Croatia and Bosnia and Herzegovina (Perreau, 2000; Giachino et al., 2011) (Fig. 1).


Assuntos
Besouros , Animais , Croácia
7.
J Therm Biol ; 76: 126-138, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30143287

RESUMO

The insect cuticle serves a multitude of purposes, including: mechanical and thermal protection, water-repelling, acoustic signal absorption and coloration. The influence of cuticular structures on infrared radiation exchange and thermal balance is still largely unexplored. Here we report on the micro- and nanostructured setae covering the elytra of the longicorn beetle Rosalia alpina (Linnaeus, 1758) (Coleoptera: Cerambycidae) that help the insect to survive in hot, summer environments. In the visible part of the spectrum, scale-like setae, covering the black patches of the elytra, efficiently absorb light due to the radiation trap effect. In the infrared part of the spectrum, setae of the whole elytra significantly contribute to the radiative heat exchange. From the biological point of view, insect elytra facilitate camouflage, enable rapid heating to the optimum body temperature and prevent overheating by emitting excess thermal energy.


Assuntos
Exoesqueleto/química , Regulação da Temperatura Corporal , Besouros/anatomia & histologia , Animais , Temperatura Alta , Luz , Modelos Biológicos , Termografia
8.
Biomed Mater ; 12(5): 055005, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28607223

RESUMO

Commercial collagen membranes are used in oral surgical procedures as scaffolds for bone deposition in guided bone regeneration. Here, we have enriched them with graphene oxide (GO) via a simple non-covalent functionalization, exploiting the capacity of oxygenated carbon functional moieties of GO to interact through hydrogen bonding with collagen. In the present paper, the GO-coated membranes have been characterized in terms of stability, nano-roughness, biocompatibility and induction of inflammatory response in human primary gingival fibroblast cells. The obtained coated membranes are demonstrated not to leak GO in the bulk solution, and to change some features of the membrane, such as stiffness and adhesion between the membrane and the atomic force microscopy (AFM) tip. Moreover, the presence of GO increases the roughness and the total surface exposed to the cells, as demonstrated by AFM analyses. The obtained material is biocompatible, and does not induce inflammation in the tested cells.


Assuntos
Colágeno/química , Fibroblastos/citologia , Gengiva/citologia , Grafite/química , Animais , Materiais Biocompatíveis/química , Adesão Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Inflamação , Microscopia de Força Atômica , Nanoestruturas/química , Óxidos , Pós , Pele/química , Suínos , Alicerces Teciduais
9.
Phys Rev E ; 95(3-1): 032405, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28415223

RESUMO

Here we report how interference and scattering-enhanced absorption act together to produce the golden wing patches of the burnished brass moth. The key mechanism is scattering on rough internal surfaces of the wing scales, accompanied by a large increase of absorption in the UV-blue spectral range. Unscattered light interferes and efficiently reflects from the multilayer composed of the scales and the wing membranes. The resulting spectrum is remarkably similar to the spectrum of metallic gold. Subwavelength morphology and spectral and absorptive properties of the wings are described. Theories of subwavelength surface scattering and local intensity enhancement are used to quantitatively explain the observed reflectance spectrum.


Assuntos
Cor , Mariposas , Asas de Animais , Animais , Microscopia , Microscopia Eletrônica de Varredura , Modelos Biológicos , Mariposas/anatomia & histologia , Mariposas/efeitos da radiação , Espalhamento de Radiação , Asas de Animais/anatomia & histologia , Asas de Animais/efeitos da radiação
10.
J Biomed Opt ; 20(1): 016010, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25574994

RESUMO

We performed a study of the nonlinear optical properties of chemically purified chitin and insect cuticle using two-photon excited autofluorescence (TPEF) and second-harmonic generation (SHG) microscopy. Excitation spectrum, fluorescence time, polarization sensitivity, and bleaching speed were measured. We have found that the maximum autofluorescence signal requires an excitation wavelength below 850 nm. At longer wavelengths, we were able to penetrate more than 150-um deep into the sample through the chitinous structures. The excitation power was kept below 10 mW (at the sample) in order to diminish bleaching. The SHG from the purified chitin was confirmed by spectral- and time-resolved measurements. Two cave-dwelling, depigmented, insect species were analyzed and three-dimensional images of the cuticular structures were obtained.


Assuntos
Quitina/química , Besouros/química , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Artrópodes/química , Cavernas , Desenho de Equipamento , Imageamento Tridimensional/métodos , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...