Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Q ; 44(1): 1-14, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38943615

RESUMO

Background: Mistletoe is an herb that grows on duku plants (Lancium demosticum) and is known as benalu duku (BD) in Indonesia. It is predicted to have benefits such as anticancer or antiviral properties, and it is also thought to have anti-diabetic pharmacological activity. Quercetin-like compounds (QLCs) are secondary metabolites with antidiabetic activity that are expected to lower blood sugar levels in animals after oral administration.Objective: This study aimed to analyze the ability of QLCs to reduce random blood sugar levels using experimental animals as clinical models.Material and methods: The research method used was exploratory, which used a before-after test model, and observations were made on the random blood sugar levels after treatment. Secondary metabolites were extracted from BD leaves, which were then screened. Diabetes was induced in 30 rats (Rattus norvegicus) by the administration of streptozotocin at 0.045 mg/g body weight daily for 2 days. The antidiabetic effects of the secondary metabolite at doses of 0.5 mg/kg body weight (twice a day) when administered orally for up to 5 days were tested in diabetic rats. The random sugar levels (mg/dL) were measured using a One Touch Ultra Plus medical device for observation of randomized blood sugar levels. Results and novelty: The results revealed that the secondary metabolite, as an analyte from the BD leaf extract, can significantly reduce random blood sugar levels.Conclusion: The secondary metabolite extracted from BD, could be used to treat diabetes in rats.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Hipoglicemiantes , Extratos Vegetais , Quercetina , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/sangue , Ratos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/administração & dosagem , Quercetina/farmacologia , Quercetina/análogos & derivados , Quercetina/uso terapêutico , Glicemia/análise , Glicemia/efeitos dos fármacos , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Erva-de-Passarinho/química , Administração Oral , Folhas de Planta/química
2.
Vet World ; 16(6): 1252-1259, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37577197

RESUMO

Background and Aim: Sulfadiazine, one of the sulfonamide group's active compounds, is widely used for therapeutic production against several diseases. Veterinary drug residues can have a significant impact on human health conditions. This study aimed to develop a prototype of rapid test devices (RTDs) for detecting sulfadiazine residues on chicken carcasses based on the color indication. Materials and Methods: Seven samples of carcasses collected from traditional breeders in Surabaya-Indonesia were prepared and tested using RTDs. This sample represents the population considering that in the last report, the use of antibiotics was more than 40%, while the ability to monitor RTDs was estimated at 100. The standard color of purple by Hex code standard color or decimal code color was used to compare the positive samples. A light-emitting diode (LED) lamp was used to observe purple color. Analysis of sulfonamides resulting from RTDs was compared using a ultraviolet-visible spectrophotometer. Results: Sulfonamides contamination levels of 50% and 100% were detected at concentrations of 0.472 µg/mL and 0.642 µg/mL, respectively. Sulfonamides contamination that was <0.395 µg/mL did not appear purple. Conclusion: The study's findings showed that RTDs can be used to detect sulfonamides residues at a limit of detection 0.5 mg/mL after a 45 min exposure to an LED operating at a wavelength of 980 nm (p < 0.05). The limitation of RTDs was not being able to monitor the presence of residues bound in fat samples. Rapid test devices can be developed for commonly monitoring devices due to the limited technology available in the market.

3.
Vet Med Int ; 2022: 1182866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36544714

RESUMO

The active compounds from the leaves of Dendrophthoe pentandra L. Miq., also known as, Benalu Duku (in Indonesia), are known to contain progesterone-like compounds (PLCs). This study aims to determine the effect of giving a single dose of PLCs on liver and kidney function in rats and the dose limit that causes the death of experimental animals. The PLCs were analyzed for chemical and physical characterization and compared to a pure standard of progesterone using HPLC, IR spectrometry, thermogravimetry, and NMR. The research was carried out in two sections. In section one, thirty-five healthy adult male rats were divided into six experimental groups and a control group of five rats each. The groups received, respectively, 50 to 75 mg/kg of PLCs (i.p.). The control group was given a 0.5 mL Aqua Pro injection. Alanine aminotransferase, aspartate aminotransferase, creatinine, and blood urea nitrogen were assessed using the clinical chemistry of blood serum analysis. Cell disruptions were analyzed to determine the degeneration effects of PLCs on the liver and kidney in the experimental and control groups. In section two, thirty healthy adult male rats were divided into 6 groups, each group of 5 rats, and injected with PLCs at a dose of 0.9-2.1 g/kg BW, followed by a lethal dose test. The control groups were available for 5 individual rats at 0 g/kg BW of PLCs. Our findings indicated that PLCs have a similarity chemical and physical characterized each other compounds, then the following administration of 50 to 75 mg/kg of PLCs did not affect the parameters of clinical chemistry. Histopathology analysis of the liver and kidney revealed normal subcellular levels in the experimental group, with the nonlethal dose at 0.9 g/kg BW.

4.
Vet World ; 15(4): 1058-1065, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35698527

RESUMO

Background and Aim: Human health problems due as a microbial resistance or tumors and cancers because consumption of the carcasses containing residues of tetracycline are main global problems in the context of fight against antimicrobial resistance phenomena. Explanation of the sustainable development goals, particularly point 3, is well recognized that all animal products for human consumption must be safe to live a healthy life. This study aimed to design a prototype of rapid test devices (RTD) based on principles of precipitate to obtain a specific color change after the process of reactions as an indicator to determine tetracycline residues in the carcass. Materials and Methods: Five samples of tetracycline-containing poultry carcasses using artificial add the tetracycline at pharmaceutics grade were examined using a prototype of a strong reaction solution for tetracycline fixation based on the concept bonded by ion Fe(III) at atom O in position atom C-1 at the ring of tetracycline and ion N+ as the functional branch of tetracycline. RTD detection was evaluated using a yellow color presentation and an absorbance spectrometric technique at a wavelength of 273 nm. Results: The following chemicals were used to create the best-fixed tetracycline residue: HCl and H2SO4 dissolved in H2O, chromatographic grade of 0.1 N and 0.5 N of HNO3, and 1% Fe (III) Cl. The RTD had a higher limit of detection (LOD) than the ultraviolet-visible spectrophotometer. Conclusion: The results of this study revealed that RTD, as constructed in this study, can be used to detect residue at LOD 44.764 mg/mL during 120 min of exposure through a light-emitting diode at 980 nm wavelength (p<0.05). The necessity for using RTD was because of the apparent limitations of conventional devices.

5.
Vet World ; 15(12): 2896-2902, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36718322

RESUMO

Background and Aim: The flavonoids from mistletoe are thought to have antimicrobial action. This encouraging finding supports the benefits of medicinal plants as a substitute for synthetic antimicrobials, thus promoting healthy lifestyles. In contrast, it is known that the use of topical drug formulations made from flavonoids of mistletoe (Dendrophthoe pentandra (L.) Miq. Loranthaceae) with Indonesian name, Benalu duku (BD) is required in skin cell irritation. This study aimed to assess the toxic effects of the flavonoid substances of BD, as an initial screening. Materials and Methods: A myeloma cell line was cultured in Roswell Park Memorial Institute medium, and the Baby Hamster Kidney clone 12 (BHK21) cell line was cultured in Dulbecco's Modified Eagle's Medium from stock (±9 × 107 cells/mL), and 1.2 mL of culture were distributed into each well of a microtiter plate. Subsequently, 0.2 mL of serially diluted flavonoid compounds (0.5-3 µg/mL) were added to 12 wells for each concentration, as trial groups (including control groups), followed by a 2-day incubation. Observations were performed based on the cytopathic effect (CPE) using an inverted microscope at a magnification of 100×. Results: Cytopathic effect was detected on the microtiter plate wells for the groups of myeloma and BHK21 cells at a flavonoid concentration of 0.5 µg/mL-3 µg/mL. Conclusion: Flavonoid compounds from BD were safely used for topical treatment of cancer cells at a concentration <2.491 µg/mL, whereas for non-cancerous cells, a concentration <2.582 µg/mL was sufficient (p < 0.05).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...