Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Orthop Trauma ; 42: 102206, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37529548

RESUMO

Closed fractures of distal radius and ulna are one of the most common skeletal injuries, occurring at all ages. Temporary arm immobilization through cast is part of the standard treatments. However, traditional casting procedures are time consuming, operator's skill dependent and do not always guarantee a satisfactory outcome. From a clinical perspective, casts are often considered uncomfortable and can be associated to skin lesions. To overcome these limitations, the recent growth of 3D technologies has enabled new standardized casting procedures: additive manufacturing (AM) is a technique that creates highly customized cast models from anatomical 3D data by using digitally controlled and operated material laying tools. Compared with conventional casts, those produced with AM technique could potentially reduce skin complications and satisfy both mechanical and clinical requirements of functionality, comfort, and aesthetics. The objective of this study is to describe the new practical methodology to produce a 3D printable cast for upper arm immobilization. The parametric modelling tool, employed to develop a semi-automatic design system for generating the printable cast model, reduces the complex process of orthosis design to a few minutes and all the manufacturing operations remain unaffected by CAD skills of the operator. Specific hardware and software tools (3D scanner, modelling software and FDM technology) were chosen to mitigate design and production costs while guaranteeing suitable levels of data accuracy, process efficiency and design versatility. To highlight the effectiveness of the proposed solution, a finite element analysis simulation was performed on models with different geometry, highlighting the mechanical strength of generated structures. The final result is a personalized 3D printed cast with a highly ventilated structure that is lightweight but still maintains a high level of strength and provides hygienic benefits, reducing the risk of cutaneous complications, potentially improving treatment efficacy and increasing patient satisfaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...