Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(11): 115201, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563953

RESUMO

Magnetic reconnection drives multispecies particle acceleration broadly in space and astrophysics. We perform the first 3D hybrid simulations (fluid electrons, kinetic ions) that contain sufficient scale separation to produce nonthermal heavy-ion acceleration, with fragmented flux ropes critical for accelerating all species. We demonstrate the acceleration of all ion species (up to Fe) into power-law spectra with similar indices, by a common Fermi acceleration mechanism. The upstream ion velocities influence the first Fermi reflection for injection. The subsequent onsets of Fermi acceleration are delayed for ions with lower charge-mass ratios (Q/M), until growing flux ropes magnetize them. This leads to a species-dependent maximum energy/nucleon ∝(Q/M)^{α}. These findings are consistent with in situ observations in reconnection regions, suggesting Fermi acceleration as the dominant multispecies ion acceleration mechanism.

2.
Phys Rev Lett ; 104(25): 255004, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20867390

RESUMO

Magnetic reconnection is a fundamental process in plasmas that results in the often explosive release of stored magnetic energy, but the trigger for its onset is not well understood. We explore this trigger for fast reconnection in toroidal experiments using a magnetic x-type geometry in the strong guide-field regime. We find that the onset occurs asymmetrically: the reconnection begins on one side of the torus and propagates around approximately at the Alfvén speed. The fast reconnection occurs only in the presence of a global plasma mode, which breaks the axisymmetry and enables the current at the x line to decrease sharply. A simple semiempirical model is used to describe the onset's growth rate.

3.
Phys Rev Lett ; 101(1): 015003, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18764120

RESUMO

We investigate experimentally the motion and structure of isolated plasma filaments propagating through neutral gas. Plasma filaments, or "blobs," arise from turbulent fluctuations in a range of plasmas. Our experimental geometry is toroidally symmetric, and the blobs expand to a larger major radius under the influence of a vertical electric field. The electric field, which is caused by nabla B and curvature drifts in a 1/R magnetic field, is limited by collisional damping on the neutral gas. The blob's electrostatic potential structure and the resulting E x B flow field give rise to a vortex pair and a mushroom shape, which are consistent with nonlinear plasma simulations. We observe experimentally this characteristic mushroom shape for the first time. We also find that the blob propagation velocity is inversely proportional to the neutral density and decreases with time as the blob cools.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...