Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(15): 14208-14218, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37180871

RESUMO

Polyethylene glycol (PEG) is a polyether compound commonly used in biological research and medicine because it is biologically inert. This simple polymer exists in variable chain lengths (and molecular weights). As they are devoid of any contiguous π-system, PEGs are expected to lack fluorescence properties. However, recent studies suggested the occurrence of fluorescence properties in non-traditional fluorophores like PEGs. Herein, a thorough investigation has been conducted to explore if PEG 20k fluoresces. Results of this combined experimental and computational study suggested that although PEG 20k could exhibit "through-space" delocalization of lone pairs of electrons in aggregates/clusters, formed via intermolecular and intramolecular interactions, the actual contributor of fluorescence between 300 and 400 nm is the stabilizer molecule, i.e., 3-tert-butyl-4-hydroxyanisole present in the commercially available PEG 20k. Therefore, the reported fluorescence properties of PEG should be taken with a grain of salt, warranting further investigation.

2.
Protein J ; 41(4-5): 444-456, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35913554

RESUMO

Using molecular dynamics simulations, the protein-protein interactions of the receptor-binding domain of the wild-type and seven variants of the severe acute respiratory syndrome coronavirus 2 spike protein and the peptidase domain of human angiotensin-converting enzyme 2 were investigated. These variants are alpha, beta, gamma, delta, eta, kappa, and omicron. Using 100 ns simulation data, the residue interaction networks at the protein-protein interface were identified. Also, the impact of mutations on essential protein dynamics, backbone flexibility, and interaction energy of the simulated protein-protein complexes were studied. The protein-protein interface for the wild-type, delta, and omicron variants contained several stronger interactions, while the alpha, beta, gamma, eta, and kappa variants exhibited an opposite scenario as evident from the analysis of the inter-residue interaction distances and pair-wise interaction energies. The study reveals that two distinct residue networks at the central and right contact regions forge stronger binding affinity between the protein partners. The study provides a molecular-level insight into how enhanced transmissibility and infectivity by delta and omicron variants are most likely tied to a handful of interacting residues at the binding interface, which could potentially be utilized for future antibody constructs and structure-based antiviral drug design.


Assuntos
Evolução Molecular , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/química , Humanos , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Mapeamento de Interação de Proteínas , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química
3.
Protein Sci ; 30(11): 2206-2220, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34558135

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a pathogenic coronavirus causing COVID-19 infection. The interaction between the SARS-CoV-2 spike protein and the human receptor angiotensin-converting enzyme 2, both of which contain several cysteine residues, is impacted by the disulfide-thiol balance in the host cell. The host cell redox status is affected by oxidative stress due to the imbalance between the reactive oxygen/nitrogen species and antioxidants. Recent studies have shown that Vitamin D supplementation could reduce oxidative stress. It has also been proposed that vitamin D at physiological concentration has preventive effects on many viral infections, including COVID-19. However, the molecular-level picture of the interplay of vitamin D deficiency, oxidative stress, and the severity of COVID-19 has remained unclear. Herein, we present a thorough review focusing on the possible molecular mechanism by which vitamin D could alter host cell redox status and block viral entry, thereby preventing COVID-19 infection or reducing the severity of the disease.


Assuntos
COVID-19 , Estresse Oxidativo/efeitos dos fármacos , SARS-CoV-2/metabolismo , Índice de Gravidade de Doença , Internalização do Vírus/efeitos dos fármacos , Vitamina D/uso terapêutico , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/patologia , COVID-19/prevenção & controle , Humanos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...