Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 13581, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945425

RESUMO

α-Thalassemia is a common inherited blood disorder manifested mainly by the deletions of α-globin genes. In geographical areas with high carrier frequencies, screening of α-thalassemia carrier state is therefore of vital importance. This study presents a novel method for identifying female carriers of common α-thalassemia deletions using samples routinely taken for non-invasive prenatal tests for screening of fetal chromosomal aneuploidies. A total of 68,885 Vietnamese pregnant women were recruited and α-thalassemia statuses were determined by gap-PCR, revealing 5344 women (7.76%) carried deletions including αα/--SEA (4.066%), αα/-α3.7 (2.934%), αα/-α4.2 (0.656%), and rare genotypes (0.102%). A two-stage model was built to predict these α-thalassemia deletions from targeted sequencing of the HBA gene cluster on maternal cfDNA. Our method achieved F1-scores of 97.14-99.55% for detecting the three common genotypes and 94.74% for detecting rare genotypes (-α3.7/-α4.2, αα/--THAI, -α3.7/--SEA, -α4.2/--SEA). Additionally, the positive predictive values were 100.00% for αα/αα, 99.29% for αα/--SEA, 94.87% for αα/-α3.7, and 96.51% for αα/-α4.2; and the negative predictive values were 97.63%, 99.99%, 99.99%, and 100.00%, respectively. As NIPT is increasingly adopted for pregnant women, utilizing cfDNA from NIPT to detect maternal carriers of common α-thalassemia deletions will be cost-effective and expand the benefits of NIPT.


Assuntos
Ácidos Nucleicos Livres , Talassemia alfa , Talassemia beta , China , Feminino , Genótipo , Humanos , Mutação , Reação em Cadeia da Polimerase/métodos , Gravidez , alfa-Globinas/genética , Talassemia alfa/diagnóstico , Talassemia alfa/genética , Talassemia beta/genética
2.
J Virol ; 91(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795418

RESUMO

Active surveillance of influenza A viruses of swine (IAV-S) involving 262 farms and 10 slaughterhouses in seven provinces in northern and southern Vietnam from 2010 to 2015 yielded 388 isolates from 32 farms; these viruses were classified into H1N1, H1N2, and H3N2 subtypes. Whole-genome sequencing followed by phylogenetic analysis revealed that the isolates represented 15 genotypes, according to the genetic constellation of the eight segments. All of the H1N1 viruses were entirely A(H1N1)pdm09 viruses, whereas all of the H1N2 and H3N2 viruses were reassortants among 5 distinct ancestral viruses: H1 and H3 triple-reassortant (TR) IAV-S that originated from North American pre-2009 human seasonal H1, human seasonal H3N2, and A(H1N1)pdm09 viruses. Notably, 93% of the reassortant IAV-S retained M genes that were derived from A(H1N1)pdm09, suggesting some advantage in terms of their host adaptation. Bayesian Markov chain Monte Carlo analysis revealed that multiple introductions of A(H1N1)pdm09 and TR IAV-S into the Vietnamese pig population have driven the genetic diversity of currently circulating Vietnamese IAV-S. In addition, our results indicate that a reassortant IAV-S with human-like H3 and N2 genes and an A(H1N1)pdm09 origin M gene likely caused a human case in Ho Chi Minh City in 2010. Our current findings indicate that human-to-pig transmission as well as cocirculation of different IAV-S have contributed to diversifying the gene constellations of IAV-S in Vietnam. IMPORTANCE: This comprehensive genetic characterization of 388 influenza A viruses of swine (IAV-S) isolated through active surveillance of Vietnamese pig farms from 2010 through 2015 provides molecular epidemiological insight into the genetic diversification of IAV-S in Vietnam after the emergence of A(H1N1)pdm09 viruses. Multiple reassortments among A(H1N1)pdm09 viruses and enzootic IAV-S yielded 14 genotypes, 9 of which carried novel gene combinations. The reassortants that carried M genes derived from A(H1N1)pdm09 viruses became predominant, replacing those of the IAV-S that had been endemic in Vietnam since 2011. Notably, one of the novel reassortants likely caused a human case in Vietnam. Given that Vietnam is the second-largest pig-producing country in Asia, continued monitoring of IAV-S is highly important from the viewpoints of both the swine industry and human public health.


Assuntos
Genoma Viral , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae/veterinária , Filogenia , Doenças dos Suínos/epidemiologia , Animais , Teorema de Bayes , Monitoramento Epidemiológico , Variação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N2/classificação , Vírus da Influenza A Subtipo H3N2/classificação , Cadeias de Markov , Método de Monte Carlo , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/genética , Suínos , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia , Vietnã/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...