Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38585903

RESUMO

GABAergic interneuron deficits have been implicated in the epileptogenesis of multiple neurological diseases. While epileptic seizures are a key clinical hallmark of CLN2 disease, a childhood-onset neurodegenerative lysosomal storage disorder caused by a deficiency of tripeptidyl peptidase 1 (TPP1), the etiology of these seizures remains elusive. Given that Cln2 R207X/R207X mice display fatal spontaneous seizures and an early loss of several cortical interneuron populations, we hypothesized that those two events might be causally related. To address this hypothesis, we first generated an inducible transgenic mouse expressing lysosomal membrane-tethered TPP1 (TPP1LAMP1) on the Cln2 R207X/R207X genetic background to study the cell-autonomous effects of cell-type-specific TPP1 deficiency. We crossed the TPP1LAMP1 mice with Vgat-Cre mice to introduce interneuron-specific TPP1 deficiency. Vgat-Cre ; TPP1LAMP1 mice displayed storage material accumulation in several interneuron populations both in cortex and striatum, and increased susceptibility to die after PTZ-induced seizures. Secondly, to test the role of GABAergic interneuron activity in seizure progression, we selectively activated these cells in Cln2 R207X/R207X mice using Designer Receptor Exclusively Activated by Designer Drugs (DREADDs) in in Vgat-Cre : Cln2 R207X/R207X mice. EEG monitoring revealed that DREADD-mediated activation of interneurons via chronic deschloroclozapine administration accelerated the onset of spontaneous seizures and seizure-associated death in Vgat-Cre : Cln2 R207X/R207X mice, suggesting that modulating interneuron activity can exert influence over epileptiform abnormalities in CLN2 disease. Taken together, these results provide new mechanistic insights into the underlying etiology of seizures and premature death that characterize CLN2 disease.

2.
Mol Genet Metab Rep ; 38: 101036, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38173710

RESUMO

Vascular involvement in the genetic disorder mucopolysaccharidosis type I (MPS I) has features of atherosclerotic disease near branch points of arterial vasculature, such as intimal thickening with disruption of the internal elastic lamina, and proliferation of macrophages and myofibroblasts. Inflammatory pathways are implicated in the pathogenesis of vascular disease in MPS I animal models, evidenced by cytokines like CD18 and TGF-ß within arterial plaques. The angiotensin II-mediated inflammatory pathway is well studied in human atherosclerotic coronary artery disease. Recent work indicates treatment with the angiotensin receptor blocker losartan may improve vascular MPS I disease in mouse models. Here, we combined losartan with the standard therapy for MPS I, enzyme replacement therapy (ERT), to measure effects on cytokines in serum and aortic vasculature. Each treatment group (losartan, ERT, and their combination) equally normalized levels of cytokines that were largely differential between normal and mutant mice. Some cytokines, notably CD30 ligand, Eotaxin-2, LIX, IL-13, IL-15, GM-CSF, MCP-5, MIG, and CCL3 showed elevations in mice treated with ERT above normal or mutant levels; these elevations were reduced or absent in mice that received losartan or combination therapy. The observations suggest that losartan may impact inflammatory cascades due to MPS I and may also blunt inflammation in combination with ERT.

3.
Biochem Biophys Res Commun ; 690: 149240, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37988878

RESUMO

Caffeine, a widely consumed stimulant, is known for its effects on alertness and fatigue reduction by blockade of adenosine receptors. While it holds therapeutic potential, its diverse impacts pose risks, particularly in early development. This study explores the developmental effects of caffeine exposure using Caenorhabditis elegans (C. elegans) as a model organism. We investigated morphological and behavioral changes induced by caffeine exposure at the L1 stage and assessed their impact at the L4 stage, which roughly corresponds to human infancy and adolescence, respectively. Caffeine-exposed worms displayed increased body length, body bends, and pharyngeal pumping rates compared to control worms. These findings indicate heightened food-seeking behavior and greater food intake, leading to the observed morphological changes. While caffeine did not affect other locomotor behaviors, its stimulatory effect on growth and development highlights its significance. This study provides insights into the potential impact of early-life caffeine exposure on long-term health and development, offering a foundation for future research in vertebrates to uncover its implications on metabolism and other metrics of health.


Assuntos
Proteínas de Caenorhabditis elegans , Cafeína , Animais , Humanos , Cafeína/farmacologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Receptores Purinérgicos P1
4.
Int J Lab Hematol ; 45(6): 927-934, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37632200

RESUMO

INTRODUCTION: Flow cytometry (FCM) is widely used in the diagnosis of mature B-cell neoplasms (MBN), and FCM data are usually consistent with morphological findings. However, diffuse large B-cell lymphoma (DLBCL), a common MBN, is sometimes not detected by FCM. This study aimed to explore factors that increase the likelihood of failure to detect DLBCL by FCM. METHODS: Cases with a final diagnosis of DLBCL that were analysed by eight-colour FCM were retrospectively collated. Clinical, FCM, histopathological and genetic data were compared between cases detected and cases not detected by FCM. RESULTS: DLBCL cases from 135 different patients were analysed, of which 22 (16%) were not detected by FCM. In samples not detected by flow cytometry, lymphocytes were a lower percentage of total events (p = 0.02), and T cells were a higher percentage of total lymphocytes (p = 0.01). Cases with high MYC protein expression on immunohistochemistry were less likely to be missed by FCM (p = 0.011). Detection of DLBCL was not different between germinal centre B-cell (GCB) and non-GCB subtypes, not significantly affected by the presence of necrosis or fibrosis, and not significantly different between biopsy specimens compared to fine-needle aspirates, or between samples from nodal compared to extranodal tissue. CONCLUSION: The study identifies several factors which affect the likelihood of DLBCL being missed by FCM. Even with eight-colour analysis, FCM fails to detect numerous cases of DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Estudos Retrospectivos , Citometria de Fluxo , Linfoma Difuso de Grandes Células B/patologia , Linfócitos B/patologia , Centro Germinativo/metabolismo , Centro Germinativo/patologia , Prognóstico
5.
Mol Ther Methods Clin Dev ; 27: 452-463, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36419468

RESUMO

Sanfilippo syndrome type B (mucopolysaccharidosis type IIIB) is a recessive genetic disorder that severely affects the brain due to a deficiency in the enzyme α-N-acetylglucosaminidase (NAGLU), leading to intra-lysosomal accumulation of partially degraded heparan sulfate. There are no effective treatments for this disorder. In this project, we carried out an ex vivo correction of neural stem cells derived from Naglu -/- mice (iNSCs) induced pluripotent stem cells (iPSC) using a modified enzyme in which human NAGLU is fused to an insulin-like growth factor II receptor binding peptide in order to improve enzyme uptake. After brain transplantation of corrected iNSCs into Naglu -/- mice and long-term evaluation of their impact, we successfully detected NAGLU-IGFII activity in all transplanted animals. We found decreased lysosomal accumulation and reduced astrocytosis and microglial activation throughout transplanted brains. We also identified a novel neuropathological phenotype in untreated Naglu -/- brains with decreased levels of the neuronal marker Map2 and accumulation of synaptophysin-positive aggregates. Upon transplantation, we restored levels of Map2 expression and significantly reduced formation of synaptophysin-positive aggregates. Our findings suggest that genetically engineered iNSCs can be used to effectively deliver the missing enzyme to the brain and treat Sanfilippo type B-associated neuropathology.

6.
J Clin Invest ; 132(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36040802

RESUMO

CLN1 disease, also called infantile neuronal ceroid lipofuscinosis (NCL) or infantile Batten disease, is a fatal neurodegenerative lysosomal storage disorder resulting from mutations in the CLN1 gene encoding the soluble lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT1). Therapies for CLN1 disease have proven challenging because of the aggressive disease course and the need to treat widespread areas of the brain and spinal cord. Indeed, gene therapy has proven less effective for CLN1 disease than for other similar lysosomal enzyme deficiencies. We therefore tested the efficacy of enzyme replacement therapy (ERT) by administering monthly infusions of recombinant human PPT1 (rhPPT1) to PPT1-deficient mice (Cln1-/-) and CLN1R151X sheep to assess how to potentially scale up for translation. In Cln1-/- mice, intracerebrovascular (i.c.v.) rhPPT1 delivery was the most effective route of administration, resulting in therapeutically relevant CNS levels of PPT1 activity. rhPPT1-treated mice had improved motor function, reduced disease-associated pathology, and diminished neuronal loss. In CLN1R151X sheep, i.c.v. infusions resulted in widespread rhPPT1 distribution and positive treatment effects measured by quantitative structural MRI and neuropathology. This study demonstrates the feasibility and therapeutic efficacy of i.c.v. rhPPT1 ERT. These findings represent a key step toward clinical testing of ERT in children with CLN1 disease and highlight the importance of a cross-species approach to developing a successful treatment strategy.


Assuntos
Lipofuscinoses Ceroides Neuronais , Animais , Criança , Modelos Animais de Doenças , Terapia de Reposição de Enzimas , Humanos , Camundongos , Mutação , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Lipofuscinoses Ceroides Neuronais/genética , Ovinos
7.
Mol Genet Metab ; 134(4): 323-329, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34844863

RESUMO

Sanfilippo D syndrome (mucopolysaccharidosis type IIID) is a lysosomal storage disorder caused by the deficiency of N-acetylglucosamine-6-sulfatase (GNS). A mouse model was generated by constitutive knockout of the Gns gene. We studied affected mice and controls at 12, 24, 36, and 48 weeks of age for neuropathological markers of disease in the somatosensory cortex, primary motor cortex, ventral posterior nuclei of the thalamus, striatum, hippocampus, and lateral and medial entorhinal cortex. We found significantly increased immunostaining for glial fibrillary associated protein (GFAP), CD68 (a marker of activated microglia), and lysosomal-associated membrane protein-1 (LAMP-1) in Sanfilippo D mice compared to controls at 12 weeks of age in all brain regions. Intergroup differences were marked for GFAP and CD68 staining, with levels in Sanfilippo D mice consistently above controls at all age groups. Intergroup differences in LAMP-1 staining were more pronounced in 12- and 24-week age groups compared to 36- and 48-week groups, as control animals showed some LAMP-1 staining at later timepoints in some brain regions. We also evaluated the somatosensory cortex, medial entorhinal cortex, reticular nucleus of the thalamus, medial amygdala, and hippocampal hilus for subunit c of mitochondrial ATP synthase (SCMAS). We found a progressive accumulation of SCMAS in most brain regions of Sanfilippo D mice compared to controls by 24 weeks of age. Cataloging the regional neuropathology of Sanfilippo D mice may aid in understanding the disease pathogenesis and designing preclinical studies to test brain-directed treatments.


Assuntos
Encéfalo/patologia , Mucopolissacaridose III/patologia , Animais , Feminino , Gliose/etiologia , Proteínas de Membrana Lisossomal/análise , Masculino , Camundongos , Microglia/fisiologia , ATPases Mitocondriais Próton-Translocadoras/análise , Mucopolissacaridose III/etiologia , Mucopolissacaridose III/metabolismo
8.
Mol Genet Metab ; 133(2): 185-192, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33839004

RESUMO

Mucopolysaccharidosis IIIB (MPS IIIB, Sanfilippo syndrome type B) is caused by a deficiency in α-N-acetylglucosaminidase (NAGLU) activity, which leads to the accumulation of heparan sulfate (HS). MPS IIIB causes progressive neurological decline, with affected patients having an expected lifespan of approximately 20 years. No effective treatment is available. Recent pre-clinical studies have shown that intracerebroventricular (ICV) ERT with a fusion protein of rhNAGLU-IGF2 is a feasible treatment for MPS IIIB in both canine and mouse models. In this study, we evaluated the biochemical efficacy of a single dose of rhNAGLU-IGF2 via ICV-ERT in brain and liver tissue from Naglu-/- neonatal mice. Twelve weeks after treatment, NAGLU activity levels in brain were 0.75-fold those of controls. HS and ß-hexosaminidase activity, which are elevated in MPS IIIB, decreased to normal levels. This effect persisted for at least 4 weeks after treatment. Elevated NAGLU and reduced ß-hexosaminidase activity levels were detected in liver; these effects persisted for up to 4 weeks after treatment. The overall therapeutic effects of single dose ICV-ERT with rhNAGLU-IGF2 in Naglu-/- neonatal mice were long-lasting. These results suggest a potential benefit of early treatment, followed by less-frequent ICV-ERT dosing, in patients diagnosed with MPS IIIB.


Assuntos
Acetilglucosaminidase/genética , Terapia de Reposição de Enzimas , Fator de Crescimento Insulin-Like II/genética , Mucopolissacaridose III/terapia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Cães , Heparitina Sulfato/metabolismo , Humanos , Infusões Intraventriculares , Camundongos , Camundongos Knockout , Mucopolissacaridose III/enzimologia , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia , Doenças do Sistema Nervoso , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia
9.
Mol Pharm ; 18(1): 214-227, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33320673

RESUMO

There is currently no cure or effective treatment available for mucopolysaccharidosis type IIID (MPS IIID, Sanfilippo syndrome type D), a lysosomal storage disorder (LSD) caused by the deficiency of α-N-acetylglucosamine-6-sulfatase (GNS). The clinical symptoms of MPS IIID, like other subtypes of Sanfilippo syndrome, are largely localized to the central nervous system (CNS), and any treatments aiming to ameliorate or reverse the catastrophic and fatal neurologic decline caused by this disease need to be delivered across the blood-brain barrier. Here, we report a proof-of-concept enzyme replacement therapy (ERT) for MPS IIID using recombinant human α-N-acetylglucosamine-6-sulfatase (rhGNS) via intracerebroventricular (ICV) delivery in a neonatal MPS IIID mouse model. We overexpressed and purified rhGNS from CHO cells with a specific activity of 3.9 × 104 units/mg protein and a maximal enzymatic activity at lysosomal pH (pH 5.6), which was stable for over one month at 4 °C in artificial cerebrospinal fluid (CSF). We demonstrated that rhGNS was taken up by MPS IIID patient fibroblasts via the mannose 6-phosphate (M6P) receptor and reduced intracellular glycosaminoglycans to normal levels. The delivery of 5 µg of rhGNS into the lateral cerebral ventricle of neonatal MPS IIID mice resulted in normalization of the enzymatic activity in brain tissues; rhGNS was found to be enriched in lysosomes in MPS IIID-treated mice relative to the control. Furthermore, a single dose of rhGNS was able to reduce the accumulated heparan sulfate and ß-hexosaminidase. Our results demonstrate that rhGNS delivered into CSF is a potential therapeutic option for MPS IIID that is worthy of further development.


Assuntos
Mucopolissacaridose III/tratamento farmacológico , Proteínas Recombinantes/farmacologia , Sulfatases/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Cricetulus , Modelos Animais de Doenças , Terapia de Reposição de Enzimas/métodos , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Mucopolissacaridose III/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptor IGF Tipo 2/metabolismo
10.
Lipids ; 55(6): 627-637, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32537944

RESUMO

Mucopolysaccharidosis type I (MPS I) is a lysosomal disease with progressive central nervous system involvement. This study examined the lipid, cholesterol, and myelin basic protein composition of white matter in the corpus callosum of MPS I mice. We studied 50 week-old, male MPS I mice and littermate, heterozygote controls (n = 12 per group). Male MPS I mice showed lower phosphatidylcholine and ether-linked phosphatidylcholine quantities than controls (p < 0.05). Twenty-two phospholipid or ceramide species showed significant differences in percent of total. Regarding specific lipid species, MPS I mice exhibited lower quantities of sphingomyelin 18:1, phosphatidylserine 38:3, and hexosylceramide d18:1(22:1) mH2 O than controls. Principal components analyses of polar, ceramide, and hexosylceramide lipids, respectively, showed some separation of MPS I and control mice. We found no significant differences in myelin gene expression, myelin basic protein, or total cholesterol in the MPS I mice versus heterozygous controls. There was a trend toward lower proteolipid protein-1 levels in MPS I mice (p = 0.06). MPS I mice show subtle changes in white matter composition, with an unknown impact on pathogenesis in this model.


Assuntos
Corpo Caloso/química , Lipídeos/análise , Lipídeos/química , Mucopolissacaridose I/patologia , Bainha de Mielina/química , Animais , Estudos de Casos e Controles , Colesterol/análise , Colesterol/metabolismo , Corpo Caloso/patologia , Feminino , Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucopolissacaridose I/metabolismo , Proteína Básica da Mielina/análise , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/genética , Bainha de Mielina/patologia
11.
Clin Chim Acta ; 508: 179-184, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32442432

RESUMO

AIMS: To validate a liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the measurement of glycosaminoglycans (GAGs) in plasma and serum. To establish plasma, cerebrospinal fluid (CSF) and urine reference intervals. To compare GAGs in serum with that in urine and CSF from patients with MPS I. METHODS: Dermatan sulfate (DS), heparan sulfate (HS), and chondroitin sulfate (CS) in serum/plasma, urine and CSF were methanolysed into dimers and analyzed using pseudo isotope dilution UPLC-MS/MS assay. Serum, CSF and urine DS and HS were quantified for 11 patients with mucopolysaccharidosis (MPS) type I before and after treatment with Aldurazyme® (laronidase) enzyme replacement therapy (ERT). RESULTS: The method showed acceptable imprecision and recovery for the quantification of serum/plasma CS, DS, and HS. The serum, urine, and CSF DS and HS concentrations were reduced after 26 weeks of ERT in 4 previously untreated patients. Serum DS and HS concentrations normalized in some patients, and were mildly elevated in others after ERT. In contrast, urine and CSF DS and HS values remained elevated above the reference ranges. Compared with serum GAGs, urine and CSF DS and HS were more sensitive biomarkers for monitoring the ERT treatment of patients with MPS I.


Assuntos
Dermatan Sulfato , Mucopolissacaridose I , Cromatografia Líquida , Terapia de Reposição de Enzimas , Glicosaminoglicanos , Heparitina Sulfato , Humanos , Mucopolissacaridose I/tratamento farmacológico , Espectrometria de Massas em Tandem
13.
Mol Genet Metab ; 129(2): 80-90, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31839529

RESUMO

Central nervous system manifestations of mucopolysaccharidosis type I (MPS I) such as cognitive impairment, hydrocephalus, and spinal cord compression are inadequately treated by intravenously-administered enzyme replacement therapy with laronidase (recombinant human alpha-L-iduronidase). While hematopoietic stem cell transplantation treats neurological symptoms, this therapy is not generally offered to attenuated MPS I patients. This study is a randomized, open-label, controlled pilot study of intrathecal laronidase in eight attenuated MPS I patients with cognitive impairment. Subjects ranged between 12 years and 50 years old with a median age of 18 years. All subjects had received intravenous laronidase prior to the study over a range of 4 to 10 years, with a mean of 7.75 years. Weekly intravenous laronidase was continued throughout the duration of the study. The randomization period was one year, during which control subjects attended all study visits and assessments, but did not receive any intrathecal laronidase. After the first year, all eight subjects received treatment for one additional year. There was no significant difference in neuropsychological assessment scores between control or treatment groups, either over the one-year randomized period or at 18 or 24 months. However, there was no significant decline in scores in the control group either. Adverse events included pain (injection site, back, groin), headache, neck spasm, and transient blurry vision. There were seven serious adverse events, one judged as possibly related (headache requiring hospitalization). There was no significant effect of intrathecal laronidase on cognitive impairment in older, attenuated MPS I patients over a two-year treatment period. A five-year open-label extension study is underway.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Terapia de Reposição de Enzimas/métodos , Injeções Espinhais , Mucopolissacaridose I/complicações , Adolescente , Adulto , Criança , Disfunção Cognitiva/etiologia , Terapia de Reposição de Enzimas/efeitos adversos , Feminino , Humanos , Iduronidase/efeitos adversos , Iduronidase/uso terapêutico , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/uso terapêutico , Projetos de Pesquisa , Adulto Jovem
14.
Mol Genet Metab ; 129(2): 91-97, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31630958

RESUMO

Therapeutic development and monitoring require demonstration of effects on disease phenotype. However, due to the complexity of measuring clinically-relevant effects in rare multisystem diseases, robust biomarkers are essential. For the mucopolysaccharidoses (MPS), the measurement of glycosaminoglycan levels is relevant as glycosaminoglycan accumulation is the primary event that occurs due to reduced lysosomal enzyme activity. Traditional dye-based assays that measure total glycosaminoglycan levels have a high background, due to a normal, baseline glycosaminoglycan content in unaffected individuals. An assay that selectively detects the disease-specific non-reducing ends of heparan sulfate glycosaminoglycans that remain undegraded due to deficiency of a specific enzyme in the catabolic pathway avoids the normal background, increasing sensitivity and specificity. We evaluated glycosaminoglycan content by dye-based and non-reducing end methods using urine, serum, and cerebrospinal fluid from MPS I human samples before and after treatment with intravenous recombinant human alpha-l-iduronidase. We found that both urine total glycosaminoglycans and serum heparan sulfate derived non-reducing end levels were markedly decreased compared to baseline after 26 weeks and 52 weeks of therapy, with a significantly greater percentage reduction in serum non-reducing end (89.8% at 26 weeks and 81.3% at 52 weeks) compared to urine total glycosaminoglycans (68.3% at 26 weeks and 62.4% at 52 weeks, p < 0.001). Unexpectedly, we also observed a decrease in non-reducing end levels in cerebrospinal fluid in all five subjects for whom samples were collected (mean 41.8% reduction, p = 0.01). The non-reducing ends in cerebrospinal fluid showed a positive correlation with serum non-reducing end levels in the subjects (r2 = 0.65, p = 0.005). Results suggest utility of the non-reducing end assay in evaluating a therapeutic response in MPS I.


Assuntos
Terapia de Reposição de Enzimas , Glicosaminoglicanos/sangue , Glicosaminoglicanos/urina , Mucopolissacaridose I/tratamento farmacológico , Biomarcadores/sangue , Técnicas de Laboratório Clínico , Monitoramento de Medicamentos/métodos , Glicosaminoglicanos/líquido cefalorraquidiano , Humanos , Iduronidase/genética , Iduronidase/uso terapêutico
15.
PLoS One ; 14(9): e0222435, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513636

RESUMO

Polycomb repressive complex 2 (PRC2) is a chromatin binding complex that represses gene expression by methylating histone H3 at K27 to establish repressed chromatin domains. PRC2 can either regulate genes directly through the methyltransferase activity of its component EZH2 or indirectly by regulating other gene regulators. Gene expression analysis of glioblastoma (GBM) cells lacking EZH2 showed that PRC2 regulates hundreds of interferon-stimulated genes (ISGs). We found that PRC2 directly represses several ISGs and also indirectly activates a distinct set of ISGs. Assessment of EZH2 binding proximal to miRNAs showed that PRC2 directly represses miRNAs encoded in the chromosome 14 imprinted DLK1-DIO3 locus. We found that repression of this locus by PRC2 occurs in immortalized GBM-derived cell lines as well as in primary bulk tumors from GBM and anaplastic astrocytoma patients. Through repression of these miRNAs and several other miRNAs, PRC2 activates a set of ISGs that are targeted by these miRNAs. This PRC2-miRNA-ISG network is likely to be important in regulating gene expression programs in GBM.


Assuntos
Glioblastoma/metabolismo , Fatores Reguladores de Interferon/genética , Complexo Repressor Polycomb 2/metabolismo , Cromatina , Metilação de DNA , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Regulação da Expressão Gênica/genética , Glioblastoma/genética , Histonas/metabolismo , Humanos , Fatores Reguladores de Interferon/metabolismo , Interferons/metabolismo , MicroRNAs/genética , Complexo Repressor Polycomb 2/genética
16.
Genet Med ; 21(11): 2552-2560, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31019279

RESUMO

PURPOSE: Abnormalities in cerebrospinal fluid (CSF) have been reported in Hurler syndrome, a fatal neurodegenerative lysosomal disorder. While no biomarker has predicted neurocognitive response to treatment, one of these abnormalities, glycosaminoglycan nonreducing ends (NREs), holds promise to monitor therapeutic efficacy. A trial of intrathecal enzyme replacement therapy (ERT) added to standard treatment enabled tracking of CSF abnormalities, including NREs. We evaluated safety, biomarker response, and neurocognitive correlates of change. METHODS: In addition to intravenous ERT and hematopoietic cell transplantation, patients (N = 24) received intrathecal ERT at four peritransplant time points; CSF was evaluated at each point. Neurocognitive functioning was quantified at baseline, 1 year, and 2 years posttransplant. Changes in CSF biomarkers and neurocognitive function were evaluated for an association. RESULTS: Over treatment, there were significant decreases in CSF opening pressure, biomarkers of disease activity, and markers of inflammation. Percent decrease in NRE from pretreatment to final intrathecal dose posttransplant was positively associated with percent change in neurocognitive score from pretreatment to 2 years posttransplant. CONCLUSION: Intrathecal ERT was safe and, in combination with standard treatment, was associated with reductions in CSF abnormalities. Critically, we report evidence of a link between a biomarker treatment response and neurocognitive outcome in Hurler syndrome.


Assuntos
Terapia de Reposição de Enzimas/métodos , Injeções Espinhais/métodos , Mucopolissacaridose I/tratamento farmacológico , Biomarcadores Farmacológicos/líquido cefalorraquidiano , Pré-Escolar , Feminino , Glicosaminoglicanos/análise , Glicosaminoglicanos/líquido cefalorraquidiano , Transplante de Células-Tronco Hematopoéticas , Humanos , Lactente , Masculino , Mucopolissacaridose I/fisiopatologia , Resultado do Tratamento
17.
Genome Res ; 29(2): 184-192, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30651280

RESUMO

Gene expression can be regulated at multiple levels, but it is not known if and how there is broad coordination between regulation at the transcriptional and post-transcriptional levels. Transcription factors and chromatin regulate gene expression transcriptionally, whereas microRNAs (miRNAs) are small regulatory RNAs that function post-transcriptionally. Systematically identifying the post-transcriptional targets of miRNAs and the mechanism of transcriptional regulation of the same targets can shed light on regulatory networks connecting transcriptional and post-transcriptional control. We used individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) for the RNA-induced silencing complex (RISC) component AGO2 and global miRNA depletion to identify genes directly targeted by miRNAs. We found that Polycomb repressive complex 2 (PRC2) and its associated histone mark, H3K27me3, is enriched at hundreds of miRNA-repressed genes. We show that these genes are directly repressed by PRC2 and constitute a significant proportion of direct PRC2 targets. For just over half of the genes corepressed by PRC2 and miRNAs, PRC2 promotes their miRNA-mediated repression by increasing expression of the miRNAs that are likely to target them. miRNAs also repress the remainder of the PRC2 target genes, but independently of PRC2. Thus, miRNAs post-transcriptionally reinforce silencing of PRC2-repressed genes that are inefficiently repressed at the level of chromatin, by either forming a feed-forward regulatory network with PRC2 or repressing them independently of PRC2.


Assuntos
Repressão Epigenética , Redes Reguladoras de Genes , MicroRNAs/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Retroalimentação Fisiológica , Perfilação da Expressão Gênica , Código das Histonas , Humanos
18.
Mol Ther Methods Clin Dev ; 10: 113-127, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30101150

RESUMO

Sanfilippo syndrome type B (mucopolysaccharidosis type IIIB [MPS IIIB]) is a lysosomal storage disorder primarily affecting the brain that is caused by a deficiency in the enzyme α-N-acetylglucosaminidase (NAGLU), leading to intralysosomal accumulation of heparan sulfate. There are currently no treatments for this disorder. Here we report that, ex vivo, lentiviral correction of Naglu-/- neural stem cells derived from Naglu-/- mice (iNSCs) corrected their lysosomal pathology and allowed them to secrete a functional NAGLU enzyme that could be taken up by deficient cells. Following long-term transplantation of these corrected iNSCs into Naglu-/- mice, we detected NAGLU activity in the majority of engrafted animals. Successfully transplanted Naglu-/- mice showed a significant decrease in storage material, a reduction in astrocyte activation, and complete prevention of microglial activation within the area of engrafted cells and neighboring regions, with beneficial effects extending partway along the rostrocaudal axis of the brain. Our results demonstrate long-term engraftment of iNSCs in the brain that are capable of cross-correcting pathology in Naglu-/- mice. Our findings suggest that genetically engineered iNSCs could potentially be used to deliver enzymes and treat MPS IIIB.

19.
Mol Ther Methods Clin Dev ; 8: 42-51, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29159202

RESUMO

Antibodies against recombinant proteins can significantly reduce their effectiveness in unanticipated ways. We evaluated the humoral response of mice with the lysosomal storage disease mucopolysaccharidosis type I treated with weekly intravenous recombinant human alpha-l-iduronidase (rhIDU). Unlike patients, the majority of whom develop antibodies to recombinant human alpha-l-iduronidase, only approximately half of the treated mice developed antibodies against recombinant human alpha-l-iduronidase and levels were low. Serum from antibody-positive mice inhibited uptake of recombinant human alpha-l-iduronidase into human fibroblasts by partial inhibition compared to control serum. Tissue and cellular distributions of rhIDU were altered in antibody-positive mice compared to either antibody-negative or naive mice, with significantly less recombinant human alpha-l-iduronidase activity in the heart and kidney in antibody-positive mice. In the liver, recombinant human alpha-l-iduronidase was preferentially found in sinusoidal cells rather than in hepatocytes in antibody-positive mice. Antibodies against recombinant human alpha-l-iduronidase enhanced uptake of recombinant human alpha-l-iduronidase into macrophages obtained from MPS I mice. Collectively, these results imply that a humoral immune response against a therapeutic protein can shift its distribution preferentially into macrophage-lineage cells, causing decreased availability of the protein to the cells that are its therapeutic targets.

20.
Behav Brain Res ; 312: 265-71, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27340089

RESUMO

Sanfilippo B syndrome is a progressive neurological disorder caused by inability to catabolize heparan sulfate glycosaminoglycans. We studied neurobehavior in male Sanfilippo B mice and heterozygous littermate controls from 16 to 20 weeks of age. Affected mice showed reduced anxiety, with a decrease in the number of stretch-attend postures during the elevated plus maze (p=0.001) and an increased tendency to linger in the center of an open field (p=0.032). Water maze testing showed impaired spatial learning, with reduced preference for the target quadrant (p=0.01). In radial arm maze testing, affected mice failed to achieve above-chance performance in a win-shift working memory task (t-test relative to 50% chance: p=0.289), relative to controls (p=0.037). We found a 12.4% reduction in mean acetylcholinesterase activity (p<0.001) and no difference in choline acetyltransferase activity or acetylcholine in whole brain of affected male animals compared to controls. Cholinergic pathways are affected in adult-onset dementias, including Alzheimer disease. Our results suggest that male Sanfilippo B mice display neurobehavioral deficits at a relatively early age, and that as in adult dementias, they may display deficits in cholinergic pathways.


Assuntos
Acetilcolinesterase/metabolismo , Ansiedade , Encéfalo/enzimologia , Memória de Curto Prazo , Mucopolissacaridose III/enzimologia , Mucopolissacaridose III/psicologia , Aprendizagem Espacial , Acetilcolina/metabolismo , Animais , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Medo , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Teste de Desempenho do Rota-Rod
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...