Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37665512

RESUMO

Combination of high quality cavity such as glass microsphere and emitting nano-particle coating layers can create novel strongly emitting devices. Herein, we demonstrate an erbium-doped silica microsphere coated by dual-emission carbon quantum dots, which have the sizes of 3-5 nm, emitting green up-conversion with narrow line-width green light at wavelength of 537 nm. The dual-emission carbon quantum dots fabricated by hydrothermal process and have luminescent emission wavelengths in the range of 410-550 nm. The carbon quantum dot coated erbium silica microsphere is pumped at wavelength of 976 nm through the optical fibre on which microsphere attached on the tip. The dual-emission carbon quantum dot layers attributed to the strong green up-conversion light enhancement similar coated noble metallic thin films, however the light enhancement from dual-emission carbon quantum dot coated erbium silica microsphere depended on the thickness of coating layers. This result is useful for making visible emitting micro-devices and photonic integrated circuits.

2.
Pharmaceutics ; 11(6)2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185610

RESUMO

Among the many methods available for solubility enhancement, mesoporous carriers are generating significant industrial interest. Owing to the spatial confinement of drug molecules within the mesopore network, low solubility crystalline drugs can be converted into their amorphous counterparts, which exhibit higher solubility. This work aims to understand the impact of drug overloading, i.e., above theoretical monolayer surface coverage, within mesoporous silica on the release behaviour and the thermal properties of loaded drugs. The study also looks at the inclusion of hypromellose acetate succinate (HPMCAS) to improve amorphisation. Various techniques including DSC, TGA, SEM, assay and dissolution were employed to investigate critical formulation factors of drug-loaded mesoporous silica prepared at drug loads of 100-300% of monolayer surface coverage, i.e., monolayer, double layer and triple layer coverage. A significant improvement in the dissolution of both Felodipine and Furosemide was obtained (96.4% and 96.2%, respectively). However, incomplete drug release was also observed at low drug load in both drugs, possibly due to a reversible adsorption to mesoporous silica. The addition of a polymeric precipitation inhibitor HPMCAS to mesoporous silica did not promote amorphisation. In fact, a partial coating of HPMCAS was observed on the exterior surface of mesoporous silica particles, which resulted in slower release for both drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...