Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 625: 128-135, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35716608

RESUMO

The development of hydrogen energy is limited by the high cost of platinum group metals (PGM). There is an urgent need to design efficient PGM-free electrocatalysts in the hydrogen electrode. Herein, Janus Ni/W bimetallic materials are proposed as an effective PGM-free bifunctional hydrogen electrocatalyst. By constructing the bimetallic materials, a synergistic effect is realized to enhance the reaction kinetics and improve the catalytic performance. In general, Ni can provide excellent Had sites, and W serves as OHad sites. Therefore, the synergistic effect of Ni and W can improve the kinetics of hydrogen evolution reaction and the hydroxide oxidation reaction. Ni/W@NF can obtain the hydrogen evolution reaction current density of 10 mA cm-2 with an overpotential of only 62.6 mV, and the exchange current density of hydroxide oxidation reaction can reach 1.83 mA cm-2. This work provides a new idea for the design of high-efficiency and low-cost PGM-free bifunctional hydrogen electrocatalysts.

2.
ACS Appl Mater Interfaces ; 13(33): 39470-39479, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433246

RESUMO

Hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) have aroused great interest, but the high price of platinum group metals (PGMs) limits their development. The electronic reconstruction at the interface of a heterostructure is a promising strategy to enhance their catalytic performance. Here, MoO2/Ni heterostructure was synthesized to provide effective HER in an alkaline electrolyte and exhibit excellent HOR performance. Theoretical and experimental analyses prove that the electron density around the Ni atom is reduced. The electron density modulation optimizes the hydrogen adsorption and hydroxide adsorption free energy, which can effectively improve the activity of both HER and HOR. Accordingly, the prepared MoO2/Ni@NF catalyst reveals robust HER activity (η10 = 50.48 mV) and HOR activity (j0 = ∼1.21 mA cm-2). This work demonstrates an effective method to design heterostructure interfaces and tailor the surface electronic structure to improve HER/HOR performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...