Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(19)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036181

RESUMO

Node mobility in multi-hop communication environments is an important feature of Wireless Sensor Network (WSN)-based monitoring systems. It allows nodes to have freedom of movement, without being restricted to a single-hop communication range. In IEEE 802.15.4 WSNs, nodes are only able to transfer data messages after completing a connection with a coordinator through an association mechanism. Within this context, a handover procedure needs to be executed by a mobile node whenever there is a disconnection from a coordinator and the establishment of a connection to another one. Many applications, such as those found in health monitoring systems, strongly need support for node mobility without loss of data during the handover. However, it has been observed that the time required to execute the handover procedure is one of the main reasons why IEEE 802.15.4 cannot fully support mobility. This paper proposes an improvement to this procedure using a set of combined strategies, such as anticipation of both the handover mechanism and the scan phase enhancement. Simulations show that it is possible to reduce latency during the association and re-association processes, making it feasible to develop WSN-based distributed monitoring systems with mobile nodes and stringent time constraints.

2.
Sensors (Basel) ; 20(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825388

RESUMO

The development of flexible and efficient communication mechanisms is of paramount importance within the context of the Internet of Things (IoT) paradigm. IoT has been used for industrial, commercial, and residential applications, and the IEEE 802.15.4/ZigBee standard is one of the most suitable protocols for this purpose. This protocol is now frequently used to implement large-scale Wireless Sensor Networks (WSNs). In industrial settings, it is becoming increasingly common to deploy cluster-tree WSNs, a complex IEEE 802.15.4/ZigBee-based peer-to-peer network topology, to monitor and control critical processes such as those related to oil or gas, mining, or certain specific chemicals. The remote monitoring of critical events for hazards or disaster detection in large areas is a challenging issue, since the occurrence of events in the monitored environment may severely stress the regular operation of the network. This paper proposes the Dynamic REconfiguration mechanism of cluster-Tree WSNs (DyRET), which is able to dynamically reconfigure large-scale IEEE 802.15.4 cluster-tree WSNs, and to assign communication resources to the overloaded branches of the tree based on the accumulated network load generated by each of the sensor nodes. A complete simulation assessment demonstrates the proposed mechanism's efficiency, and the results show that it can guarantee the required quality of service level for the dynamic reconfiguration of cluster-tree networks.

3.
Sensors (Basel) ; 17(5)2017 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-28481245

RESUMO

The IEEE 802.15.4/ZigBee cluster-tree topology is a suitable technology to deploy wide-scale Wireless Sensor Networks (WSNs). These networks are usually designed to support convergecast traffic, where all communication paths go through the PAN (Personal Area Network) coordinator. Nevertheless, peer-to-peer communication relationships may be also required for different types of WSN applications. That is the typical case of sensor and actuator networks, where local control loops must be closed using a reduced number of communication hops. The use of communication schemes optimised just for the support of convergecast traffic may result in higher network congestion and in a potentially higher number of communication hops. Within this context, this paper proposes an Alternative-Route Definition (ARounD) communication scheme for WSNs. The underlying idea of ARounD is to setup alternative communication paths between specific source and destination nodes, avoiding congested cluster-tree paths. These alternative paths consider shorter inter-cluster paths, using a set of intermediate nodes to relay messages during their inactive periods in the cluster-tree network. Simulation results show that the ARounD communication scheme can significantly decrease the end-to-end communication delay, when compared to the use of standard cluster-tree communication schemes. Moreover, the ARounD communication scheme is able to reduce the network congestion around the PAN coordinator, enabling the reduction of the number of message drops due to queue overflows in the cluster-tree network.

4.
Sensors (Basel) ; 17(2)2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28134822

RESUMO

The use ofWireless Sensor Network (WSN) technologies is an attractive option to support wide-scale monitoring applications, such as the ones that can be found in precision agriculture, environmental monitoring and industrial automation. The IEEE 802.15.4/ZigBee cluster-tree topology is a suitable topology to build wide-scale WSNs. Despite some of its known advantages, including timing synchronisation and duty-cycle operation, cluster-tree networks may suffer from severe network congestion problems due to the convergecast pattern of its communication traffic. Therefore, the careful adjustment of transmission opportunities (superframe durations) allocated to the cluster-heads is an important research issue. This paper proposes a set of proportional Superframe Duration Allocation (SDA) schemes, based on well-defined protocol and timing models, and on the message load imposed by child nodes (Load-SDA scheme), or by number of descendant nodes (Nodes-SDA scheme) of each cluster-head. The underlying reasoning is to adequately allocate transmission opportunities (superframe durations) and parametrize buffer sizes, in order to improve the network throughput and avoid typical problems, such as: network congestion, high end-to-end communication delays and discarded messages due to buffer overflows. Simulation assessments show how proposed allocation schemes may clearly improve the operation of wide-scale cluster-tree networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...