Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Insects ; 15(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39057204

RESUMO

Trypanosoma cruzi, the causative agent of Chagas disease (American trypanosomiasis), is a highly complex zoonosis that is present throughout South America, Central America, and Mexico. The transmission of this disease is influenced by various factors, including human activities like deforestation and land use changes, which may have altered the natural transmission cycles and their connection to the environment. In this study conducted in the Argentine Chaco region, we examined the transmission dynamics of T. cruzi by collecting blood samples from wild and domestic animals, as well as triatomine bugs from human dwellings, across five sites of varying anthropic intervention. Samples were analyzed for T. cruzi infection via qPCR, and we additionally examined triatomines for bloodmeal analysis via NGS amplicon sequencing. Our analysis revealed a 15.3% infection rate among 20 wild species (n = 123) and no T. cruzi presence in 9 species of domestic animals (n = 1359) or collected triatomines via qPCR. Additionally, we found chicken (34.28%), human (21.59%), and goat (19.36%) as the predominant bloodmeal sources across all sites. These findings suggest that anthropic intervention and other variables analyzed may have directly impacted the spillover dynamics of T. cruzi's sylvatic cycle and potentially reduced its prevalence in human habitats.

2.
PLoS Negl Trop Dis ; 17(2): e0011063, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36821543

RESUMO

Caterpillars of the Neotropical genus Lonomia (Lepidoptera: Saturniidae) are responsible for some fatal envenomation of humans in South America inducing hemostatic disturbances in patients upon skin contact with the caterpillars' spines. Currently, only two species have been reported to cause hemorrhagic syndromes in humans: Lonomia achelous and Lonomia obliqua. However, species identifications have remained largely unchallenged despite improved knowledge of venom diversity and growing evidence that the taxonomy used over past decades misrepresents and underestimates species diversity. Here, we revisit the taxonomic diversity and distribution of Lonomia species using the most extensive dataset assembled to date, combining DNA barcodes, morphological comparisons, and geographical information. Considering new evidence for seven undescribed species as well as three newly proposed nomenclatural changes, our integrative approach leads to the recognition of 60 species, of which seven are known or strongly suspected to cause severe envenomation in humans. From a newly compiled synthesis of epidemiological data, we also examine the consequences of our results for understanding Lonomia envenomation risks and call for further investigations of other species' venom activities. This is required and necessary to improve alertness in areas at risk, and to define adequate treatment strategies for envenomed patients, including performing species identification and assessing the efficacy of anti-Lonomia serums against a broader diversity of species.


Assuntos
Venenos de Artrópodes , Mariposas , Animais , Humanos , Larva , Venenos de Artrópodes/toxicidade , Hemorragia , América do Sul
3.
Braz J Microbiol ; 54(2): 1145-1156, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36828985

RESUMO

The ecology of vector-borne diseases (VBDs) is an important system of great complexity, which involves the knowledge about the pathogens and animal species entailed in maintaining transmission cycles in a given locality, including those that act as vectors and reservoirs for the transmitted pathogens. To understand the ecology of some VBDs, we studied vectors, reservoirs, and pathogens of different VBDs, including dengue, leishmaniasis, Chagas disease, malaria, Zika, and chikungunya in the municipality of La Mesa, Cundinamarca, Colombia, a locality close to the capital, Bogotá. Vectors and mammals were sampled in urban and rural areas between May and August 2019. Molecular analyses were performed for the detection of pathogens in mammals and vectors, and of blood-meal sources in insects. Several vectors and mammals collected in this study have been involved in pathogen transmission cycles or may have a potential role in them. The findings of this study suggest that in the municipality of La Mesa, there are both vector and potential reservoir species, which are or could be implicated in the maintenance of the cycles of vector-borne diseases such as leishmaniasis and Chagas disease. Although arbovirus infections, such as dengue, are reported in the municipality, arbovirus presence was not detected. These findings highlight the importance of ongoing surveillance of vectors and associated control operations in La Mesa, of relevance to other locations where vectors and animal hosts also occur.


Assuntos
Doença de Chagas , Dengue , Leishmaniose , Infecção por Zika virus , Zika virus , Animais , Colômbia/epidemiologia , Zoonoses/epidemiologia , Doença de Chagas/epidemiologia , Leishmaniose/epidemiologia , Infecção por Zika virus/epidemiologia , Dengue/epidemiologia , Mamíferos
4.
Parasit Vectors ; 15(1): 463, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514137

RESUMO

BACKGROUND: Dipylidium caninum is the causal agent of dipylidiasis affecting mainly cats and dogs worldwide. Human cases of dipylidiasis are rare, and the diagnosis is prevalently based on morphological features of the parasite. Here we report the diagnosis of dipylidiasis through morphological and molecular characterization of D. caninum infecting an 11-month-old boy in Cajicá, Colombia. METHODS: Fresh faecal samples were obtained from the infant, and morphological identification of the parasite was performed through faecal smears. DNA was extracted from proglottids and used in PCR analyses for amplification of a 653-bp fragment of the nuclear ribosomal RNA (rRNA) encoding the 28S rRNA gene. A phylogeny study to better characterize the obtained DNA sequence was inferred using the maximum likelihood method and the Tamura-Nei model. RESULTS: After morphological and molecular analyses, D. caninum was identified as the etiological agent causing the infection in the infant. Results of phylogenetical analyses showed that the obtained sequence clusters within the feline genotype clade. After the diagnosis of the parasite, effective treatment with praziquantel was administered to the infant. CONCLUSIONS: This is the third human case of dipylidiasis reported in Colombia, and the first study in South America to provide a molecular identification of D. caninum.


Assuntos
Cestoides , Infecções por Cestoides , Parasitos , Masculino , Gatos , Animais , Lactente , Humanos , Cães , Colômbia , Cestoides/genética , Infecções por Cestoides/diagnóstico , Infecções por Cestoides/veterinária , Infecções por Cestoides/parasitologia , Praziquantel/uso terapêutico
5.
Parasit Vectors ; 15(1): 406, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329517

RESUMO

BACKGROUND: Colombia is ranked very high among countries with the highest numbers of endemic Leishmania species (n = 9) causing human disease. Although much effort has been devoted to generating simple and specific tools for Leishmania species identification, challenges remain in the discrimination of species belonging to the Leishmania (Viannia) guyanensis complex: L. (V.) guyanensis and L. (V.) panamensis. METHODS: A set of seven reference strains of species belonging to the L. (Leishmania) and L. (Viannia) subgenera, clinical strains from human cases of cutaneous leishmaniasis (CL; n = 26) and samples collected from sylvatic mammals and sand flies (n = 7) from endemic areas in Colombia were analyzed in this study. The heat-shock protein 70 gene (hsp70) was amplified by PCR from DNA extracted from logarithmic-phase promastigotes or tissue samples, and the PCR products were sequenced. Sequence alignment was performed against a set of previously published and curated sequences, and phylogenetic analysis based on the maximum-likelihood and Bayesian inference approaches was conducted. Haplotype diversity among strains and species of the L. (V.) guyanensis complex was explored using a median-joining network. RESULTS: Sequencing of the hsp70 gene for L. (Viannia) spp. typing was comparable to species identification using isoenzyme electrophoresis or monoclonal antibodies. Complete species matching was found, except for one sylvatic sample with an identity yet unsolved. Among the L. (V.) panamensis clinical strains, two distinctive phylogenetic clusters were found to correlate with two different zymodemes: L. (V.) panamensis Z2.2 and Z2.3. Analysis of samples from sylvatic environments identified novel records of naturally infected wild mammal and sand fly species. CONCLUSIONS: Our results support the adequacy of hsp70 gene sequencing as a single-locus approach for discrimination of L. (Viannia) spp., as well as for exploring the genetic diversity within the L. (V.) guyanensis complex.


Assuntos
Leishmania guyanensis , Leishmania , Psychodidae , Animais , Humanos , Leishmania guyanensis/genética , Proteínas de Choque Térmico HSP70/genética , Filogenia , Colômbia/epidemiologia , Teorema de Bayes , Leishmania/genética , Mamíferos
6.
PLoS One ; 17(5): e0268340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35544541

RESUMO

Continued waves, new variants, and limited vaccine deployment mean that SARS-CoV-2 tests remain vital to constrain the coronavirus disease 2019 (COVID-19) pandemic. Affordable, point-of-care (PoC) tests allow rapid screening in non-medical settings. Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) is an appealing approach. A crucial step is to optimize testing in low/medium resource settings. Here, we optimized RT-LAMP for SARS-CoV-2 and human ß-actin, and tested clinical samples in multiple countries. "TTTT" linker primers did not improve performance, and while guanidine hydrochloride, betaine and/or Igepal-CA-630 enhanced detection of synthetic RNA, only the latter two improved direct assays on nasopharygeal samples. With extracted clinical RNA, a 20 min RT-LAMP assay was essentially as sensitive as RT-PCR. With raw Canadian nasopharygeal samples, sensitivity was 100% (95% CI: 67.6% - 100%) for those with RT-qPCR Ct values ≤ 25, and 80% (95% CI: 58.4% - 91.9%) for those with 25 < Ct ≤ 27.2. Highly infectious, high titer cases were also detected in Colombian and Ecuadorian labs. We further demonstrate the utility of replacing thermocyclers with a portable PoC device (FluoroPLUM). These combined PoC molecular and hardware tools may help to limit community transmission of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Canadá , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Sensibilidade e Especificidade
7.
Parasit Vectors ; 14(1): 446, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488857

RESUMO

BACKGROUND: Dengue, Zika and chikungunya are arboviruses of significant public health importance that are transmitted by Aedes aegypti and Aedes albopictus mosquitoes. In Colombia, where dengue is hyperendemic, and where chikungunya and Zika were introduced in the last decade, more than half of the population lives in areas at risk. The objective of this study was to characterize Aedes spp. vectors and study their natural infection with dengue, Zika and chikungunya in Ibagué, a Colombian city and capital of the department of Tolima, with case reports of simultaneous circulation of these three arboviruses. METHODS: Mosquito collections were carried out monthly between June 2018 and May 2019 in neighborhoods with different levels of socioeconomic status. We used the non-parametric Friedman, Mann-Whitney and Kruskal-Wallis tests to compare mosquito density distributions. We applied logistic regression analyses to identify associations between mosquito density and absence/presence of breeding sites, and the Spearman correlation coefficient to analyze the possible relationship between climatic variables and mosquito density. RESULTS: We collected Ae. aegypti in all sampled neighborhoods and found for the first time Ae. albopictus in the city of Ibagué. A greater abundance of mosquitoes was collected in neighborhoods displaying low compared to high socioeconomic status as well as in the intradomicile compared to the peridomestic space. Female mosquitoes predominated over males, and most of the test females had fed on human blood. In total, four Ae. aegypti pools (3%) were positive for dengue virus (serotype 1) and one pool for chikungunya virus (0.8%). Interestingly, infected females were only collected in neighborhoods of low socioeconomic status, and mostly in the intradomicile space. CONCLUSIONS: We confirmed the co-circulation of dengue (serotype 1) and chikungunya viruses in the Ae. aegypti population in Ibagué. However, Zika virus was not detected in any mosquito sample, 3 years after its introduction into the country. The positivity for dengue and chikungunya viruses, predominance of mosquitoes in the intradomicile space and the high proportion of females fed on humans highlight the high risk for arbovirus transmission in Ibagué, but may also provide an opportunity for establishing effective control strategies.


Assuntos
Aedes/virologia , Arbovírus/isolamento & purificação , Febre de Chikungunya/epidemiologia , Dengue/epidemiologia , Mosquitos Vetores/virologia , Infecção por Zika virus/epidemiologia , Animais , Arbovírus/genética , Febre de Chikungunya/transmissão , Vírus Chikungunya/genética , Cidades/epidemiologia , Colômbia/epidemiologia , Dengue/transmissão , Vírus da Dengue/genética , Características da Família , Feminino , Humanos , Masculino , Saúde Pública , Zika virus/genética , Infecção por Zika virus/transmissão
8.
Sci Rep ; 11(1): 18656, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545162

RESUMO

Studies on the feeding behavior of hematophagous insects, particularly those of medical importance, are relevant for tracking possible pathogen transmission routes and identifying biases in the choice of vertebrates. We evaluated host selection of blood-feeding mosquitoes in a disturbed forest in the Magdalena Medio valley in Colombia from March 2017 to April 2018, after the introduction of Zika virus to the Americas from the 2015-2016 outbreak. We estimated vertebrate diversity and collected blood-engorged female mosquitoes. Genomic DNA/RNA was extracted from the mosquito's abdomen for vertebrate host identification and pathogen detection. We performed conventional PCR and sequencing, using universal primers targeting vertebrate regions of the eukaryotic mitochondrial genome to determine bloodmeal host. Additionally, we tested for the presence of flaviviruses in all mosquito samples with RT-PCR. Based on the identity and quantity of detected bloodmeals, we performed mosquito-vertebrate interaction network analysis and estimated topology metrics. In total, we collected 292 engorged female mosquitoes representing 20 different species. Bloodmeal analyses identified 26 vertebrate species, the majority of which were mammals (N = 16; 61.5%). No flaviviruses of medical importance were detected from the samples. Although feeding patterns varied, network analyses showed a high degree of specialization by mosquitoes and revealed ecological and phylogenetic relationships among the host community. We conclude that host selection or preference by mosquitoes is species specific.


Assuntos
Culicidae/genética , Flavivirus/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Animais , Anopheles/virologia , Colômbia , Culicidae/metabolismo , Culicidae/virologia , Comportamento Alimentar/fisiologia , Feminino , Flavivirus/patogenicidade , Interações entre Hospedeiro e Microrganismos/genética , Mamíferos , Mosquitos Vetores/virologia , Filogenia , Floresta Úmida , Especificidade da Espécie , Vertebrados
9.
Sci Rep ; 11(1): 6789, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762622

RESUMO

The Leishmaniases are a group of neglected tropical diseases caused by different species of the protozoan parasite Leishmania, transmitted to its mammalian hosts by the bites of several species of female Phlebotominae sand flies. Many factors have contributed to shifts in the disease distribution and eco epidemiological outcomes, resulting in the emergence of Cutaneous Leishmaniasis outbreaks and the incrimination of vectors in unreported regions. New research development is vital for establishing the new paradigms of the present transmission cycles, hoping to facilitate new control strategies to reduce parasite transmission. Hereafter, this work aims to model and infer the current transmission cycles of Cutaneous Leishmaniasis in Colombia defined by vector and mammal species distributed and interacting in the different regions and validate them by performing sand fly and mammal collections. Vector-host co-occurrences were computed considering five ecoregions of the Colombian territory defined by the World Wide Fund for Nature (WWF) and downloaded from The Nature Conservancy TNC Maps website. Four validation sites were selected based on Cutaneous Leishmaniasis prevalence reports. Sand flies and mammals captured in the field were processed, and species were defined using conventional taxonomic guidelines. Detection of infection by Leishmania was performed to identify transmission cycles in the selected areas. This study uses predictive models based on available information from international gazetteers and fieldwork to confirm sand fly and mammalian species' sustaining Leishmania transmission cycles. Our results show an uneven distribution of mammal samples in Colombia, possibly due to sampling bias, since only two departments contributed 50% of the available samples. Bats were the vertebrates with the highest score values, suggesting substantial spatial overlap with sand flies than the rest of the vertebrates evaluated. Fieldwork allowed identifying three circulating Leishmania species, isolated from three sand fly species. In the Montane Forest ecosystem, one small marsupial, Gracilinanus marica, was found infected with Leishmania panamensis, constituting the first record of this species infected with Leishmania. In the same locality, an infected sand fly, Pintomyia pia, was found. The overall results could support the understanding of the current transmission cycles of Leishmaniasis in Colombia.


Assuntos
Leishmania/fisiologia , Psychodidae/parasitologia , Animais , Quirópteros/parasitologia , Análise por Conglomerados , Colômbia , DNA de Protozoário/análise , DNA de Protozoário/isolamento & purificação , DNA de Protozoário/metabolismo , Ecossistema , Insetos Vetores/parasitologia , Leishmania/genética , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Leishmaniose Cutânea/transmissão , Mamíferos/parasitologia , Especificidade da Espécie
10.
Acta Trop ; 212: 105674, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32827453

RESUMO

Chagas disease is a zoonosis that affects several million people and is caused by the parasite Trypanosoma cruzi, which is mainly transmitted through the feces of triatomine bugs. Within triatomines, several Rhodnius species have been found inhabiting palms, and certain factors such as palm species and location have been related to the abundance and T. cruzi infection of those insects in palms. In this study, the main goal was to determine if R. prolixus abundances and infection rates in Attalea butyracea and Elaeis guineensis palms are related to ecological factors such as palm species, crown microclimate, and available blood meal sources. Triatomine sampling was performed in two municipalities of Casanare, Colombia, specifically in the intersection of riparian forests and oil palm plantations. For R. prolixus abundance per palm, the predictors showing more relationship were palm species and blood meal species identified in the palm, and for T. cruzi infection per triatomine, they were palm species and nymphal stage. Palm microclimate was very similar in both palm species and did not show a relationship with triatomine abundance. Comparing palm species, A. butyracea showed more blood meal species, including more refractory host species, than E. guineensis, but lower T. cruzi infection rate and parasitaemia. Interestingly, non-arboreal blood meal species were frequently found in the analyzed nymphs, indicating that the blood source for R. prolixus in palms corresponded to all the fauna located in the surrounded landscape and not only in the palm. These results could expose a new ecological scenario to interpret the T. cruzi transmission in sylvatic environments.


Assuntos
Arecaceae/parasitologia , Doença de Chagas/transmissão , Insetos Vetores/parasitologia , Microclima , Rhodnius/parasitologia , Animais , Humanos , Zoonoses/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA