Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 838(Pt 1): 156022, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588807

RESUMO

Biodiversity-based cropping systems are an interesting option to address the many challenges that agriculture faces. However, benefits of these systems should not obscure the fact that creating biodiversity-based cropping systems represents a major change for farmers. To address this challenge, we argue that designing biodiversity-based cropping systems requires transforming ecological concepts into technical opportunities. Indeed, integrating ecological concepts such as plant-soil feedback and plant functional traits more strongly into cropping system design offers promising opportunities for the provision of ecosystem services, such as pest and disease control, crop production (including crop yield stability), climate regulation and regulation of soil quality. Accordingly, we demonstrate that designing biodiversity-based cropping systems requires considering not only the short term but also the long term. This would ensure that the expected ecosystem services have enough time to build up and provide their full effects, that the cropping systems are resilient and that they avoid the limitations of short-term assessments, which do not sufficiently consider multi-year effects. Considering long-term consequences of system change - induced by biodiversity - is essential to identify potential trade-offs between ecosystem services, as well as agricultural obstacles to and mechanisms of change. Including farmers and other food-chain actors in cropping system design would help find acceptable compromises that consider not only the provision of ecosystem services, but also other dimensions related to economic viability, workload or the technical feasibility of crops, which are identified as major obstacles to crop diversification. This strategy represents an exciting research front for the development of agroecological cropping systems.


Assuntos
Biodiversidade , Ecossistema , Agricultura/métodos , Produtos Agrícolas , Solo
2.
Data Brief ; 40: 107816, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35071709

RESUMO

Cereal-legume mixture is a well-known successful intercrop model for an efficient use of soil nutrients [1,2]. Effects of mineral N gradient on the acquisition of major nutrients: potassium (K), calcium (Ca), magnesium (Mg) and sulfur (S) is presented. A greenhouse pot experiment was conducted with wheat (Triticum aestivum L. cv. Lennox) and white lupin (Lupinus albus L. cv. Feodora) grown as sole crops and intercropped along a soil mineral N gradient obtained by 15N addition. Plants were harvested at flowering stage and dry weights of shoots and roots were measured. Potassium, calcium, magnesium and sulfur concentrations in shoots and roots were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

3.
Ann Bot ; 105(7): 1183-97, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20495198

RESUMO

BACKGROUND AND AIMS: Plant nutrition models do not properly account for the effects of root-induced chemical changes in the rhizosphere, e.g. pH changes, on the availability of nutrients such as phosphorus (P). As a result, they underestimate the actual P uptake, i.e. P bioavailability to the plant, in low-P soils. The present study aims at simulating root-induced chemical mechanisms controlling P nutrition in a P-limited soil. METHODS: In this work a mechanistic description for the adsorption of cations and anions by soil constituents (1pK-Triple Plane Model, ion-exchange and Nica-Donnan) was used to simulate changes induced by durum wheat (Triticum durum turgidum) in the P availability of the soil, as measured by water and CaCl2 extraction. Calcium (Ca) availability was also measured and simulated. KEY RESULTS: The simulations were found to be in close agreement with experimental data. In the rhizosphere, the goodness-of-fit required to account for the measured uptake of Ca by plants, in addition to the measured uptake of P and root-induced alkalization, were satisfactory. Calcium uptake significantly increased P availability, as assessed through water extraction, by decreasing the promoting effect of Ca adsorption on P adsorption. The study thus enabled P and Ca availability to be related to their bioavailability for durum wheat under experimental conditions. It was also shown that P was primarily adsorbed onto Fe oxides and clay minerals (kaolinite and illite) depending on soil pH. The major source of P for durum wheat nutrition was P desorbed from goethite and kaolinite. CONCLUSIONS: In addition to confirming the validity of our approach to model P availability, the present investigation suggested that in the studied soil, a novel root-induced chemical process was controlling P nutrition under P-deficient conditions, namely the uptake of Ca.


Assuntos
Fósforo/metabolismo , Raízes de Plantas/metabolismo , Triticum/metabolismo , Cálcio/metabolismo , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...